# FINAL MY2 MONITORING REPORT

**NESBIT SITE** 

Union County, North Carolina Catawba River Basin Cataloging Unit 03050103

DMS Project No. 100121 Full Delivery Contract No. 7868 DMS RFP No. 16-007704 (issued 9/6/2018) USACE Action ID No. SAW-2019-00832 DWR Project No. 2019-0862

Data Collection: January 2023-November 2023 Submission: February 2024



Prepared for:



Mitigation Services

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492



#### Response to DMS Comments – MY2 (2023)

Nesbit Stream and Wetland Mitigation Site, Union County Catawba River Basin, Cataloging Unit 03050103 DMS Project ID No. 100121, Full Delivery Contract No. 7868, RFP No. 16-007704 USACE Action ID No. SAW-2019-00832, DWR Project No. 2019-0862

DMS Comments Received (Black Text) & Responses (Blue Text)

#### **Report Document:**

 MY2 (2023) Monitoring Summary: Herbicide overspray is contributing to low stem density in portions of the site. Overspray impact is also considered an easement encroachment and needs to be added to the encroachment discussion. Due to the ongoing encroachments, a proposed boundary inspection schedule and action plan needs to be added to the MY2 (2023) report.
 Response: A bullet point discussing herbicide overspray was added to the encroachment section in the

Response: A bullet point discussing herbicide overspray was added to the encroachment section in the monitoring summary. A proposed boundary inspection schedule and action plan has been added as well.

2. 3.2 Wetland Assessment: The MY2 (2023) hydroperiods generally increased as compared to MY1 but both were considered low precipitation years. Incorporation of reference wetland gauge data for future drought year comparison would be informative for interpreting wetland performance. Soil borings adjacent to failing wells in future monitoring years may also help substantiate the success of the project wetlands. DMS recommends installing a wetland reference gauge prior to the start of the MY3 (2024) growing season. Response: We acknowledge that a reference gauge would provide a valuable data point, however given the Site wetlands are occurring within Wehadkee inclusions of the Secrest-Cid complex finding a viable reference site with a willing landowner within close proximity to the Site would be extremely difficult. We considered looking upstream of the Site within the Secrest-Cid complex soil map unit, but feel it would not be appropriate if wetlands exist there do to hydrology being affected by the presence of upstream features including the road and two ponds. We are encouraged by increase in hydroperiods from MY1 to MY2 given the climactic conditions, especially given that the gauges not meeting included hydroperiods of representative of jurisdictional wetlands.

Soil profiles will be performed in MY4 at gauges not meeting hydrology success criteria in MY3.

- 3. Section 3.3 Vegetative Assessment: Large areas of tall grass are present onsite. Add discussion detailing treatment efforts made during MY2 and indicate if the stem count and plot performance is mainly being affected by herbaceous competition, invasive treatment or herbicide overspray. Response: The following information was added to the discussion of planted stem mortality in the second paragraph of Section 3.3: "Other isolated instances of planted stem mortality can be attributed to competition from a dense herbaceous layer and scattered occurrences of invasive species. Invasive species observed included cattail, privet, chinaberry, autumn olive, princess tree, and Johnson grass, which were both treated over multiple Site visits during July and August 2023. It is expected that invasive species treatments will help reduce competition and decrease planted stem mortality rates, although the majority of the planted stem mortality observed during MY2 can be attributed to the aforementioned agricultural herbicide overspray."
- 4. Section 3.3 Vegetative Assessment: Please provide observations of the live stake performance. Response: The following sentence was added to the end of the second paragraph in Section 3.3: "Live stakes planted along stream banks are generally vigorous and were not observed to be affected by herbaceous competition or herbicide overspray."
- 5. Appendix A. Figure 1 CCPV: Add any areas impacted by herbicide overspray that are not currently shown. Response: The areas observed to be impacted by herbicide overspray are depicted in yellow cross-hatching. The legend label has been updated to clarify that these are the areas affected by overspray.

6. Appendix A. Figure 1 - CCPV: Please add the marsh treatment areas and all supplemental planting areas to the CCPV.

Response: Marsh treatment areas were added to the CCVP. No supplemental planting has occurred on site, and therefore no polygons were added to the figure.

- Appendix A. Table 5 Low Stem Density Areas: Areas impacted by herbicide overspray must be added to the Easement Encroachment Area section of Table 5.
   Response: The 3 low stem density polygons were added to the easement encroachment section of Table 5, and the definition column was updated accordingly.
- Appendix A. Photo Log: Thank you for providing photos showing the easement encroachment areas. The aerial photos are very useful in communicating the extent of the encroachments. Response: Understood.
- Appendix D. Hydrologic Data Nesbit Glen Branch Crest Gauge Chart: Add lines showing bankfull and thalweg to the graph and add a legend showing each linetype.
   Response: Bankfull and thalweg elevations were added to the crest gauge graph. A legend was added to show each line type.
- 10. Appendix D. Hydrologic Data Nesbit Groundwater Gauge Charts 1-9: Add lines showing the ground surface and brackets showing the total number of consecutive days meeting the wetland criteria to the graphs. Add a legend showing each linetype/data point (precipitation, water level, depth criteria and ground surface). Response: A ground surface elevation line, bracket for consecutive days meeting criteria, and legend were added to each groundwater gauge graph.
- Appendix E, Table 14 Project Timeline: Add all extra activities conducted at the site including supplemental boundary marking, soil amendment application and planting to the table. Response: All Site activities were added to the table including the following: basal bark privet treatments, lime and fertilizer application, seeding, boundary marking, horse tape installation, and invasive treatments of parrotfeather, cattail, privet, chinaberry, autumn olive, princess tree, and Johnson grass.

#### **DMS Site Inspection Comments:**

1. Row Crop and Herbicide Encroachments: DMS conducted a site inspection on January 23, 2024. No new encroachments were observed in the areas protected with horse tape. Several small areas of new crop scalloping (non-taped areas) were noted along the eastern side of the site where newly sprouted grain is now visible within the conservation easement (one to two feet). The extent of herbicide impact was not evident anywhere onsite since the vegetation is currently dormant. Please include landowner correspondence for the current effort in the MY2 (2023) report appendices to document efforts to date. Please develop a plan and schedule for inspecting the easement boundary and indicate the proposed actions to eliminate future conservation easement encroachment. DMS plans to conduct a full MY3 (2024) Property Boundary Inspection later in the year.

Response: Landowner correspondence has been included as requested. An additional landowner coordination meeting was held on 2/9/2024 after the DMS inspection. In Q1 2024 RS will be adding additional boundary markers discussed with the landowner to improve visibility from farm equipment. This will consist of 10' tall 1.5" PVC markers with horse tape along all field boundaries. A followup meeting with the farm manager will occur in May/June of 2024 around wheat harvest to address potential impacts related to the planned soybean crop which will follow.

2. Ag Equipment Encroachment: Mud ruts and vegetation damage were seen where a combine crossed through the conservation easement on the western side of the site near Nesbit Road. The ruts are within a wetland enhancement area and are oriented perpendicular to the stream channel. Standing water filled the ruts at the time of the site visit and are of concern due to their wetland dewatering potential. The equipment crossed over a riffle, with minimal impact to the streambed, but live stake plantings along the streambank were damaged on both sides of the channel. Please indicate the plan to address these issues.

Response: In Q1 2024 RS will add live stakes along the affected riffle and at the ruts where standing water was observed. The ruts will be addressed by hand to ensure they do now dewater the wetland area or encourage further encroachment in that area.

- 3. Marsh Treatment BMPs: Significant sediment deposition was seen in the marsh treatment areas installed as BMPs during construction. Erosional rills and incising ditches are developing upgradient in the adjacent crop fields resulting in sediment deposition in the BMPs which are now mostly filled with sediment. Please indicate the plans to address the issues and include them in the MY3 (2024) report. Response: The marsh treatment areas have functioned as designed to capture inbound sediment above the streams. The rills developing outside the easement area were not present during the design process and have contributed more sediment than expected, moderately shortening the effective lifespan of the BMPs. However, the vegetative buffer continues to function as expected therefore there are no plans to modify these structures.
- 4. UT2: UT2 Reach 1 is an Enhancement II reach approximately 112 feet long. A headcut has developed in the upper end of the reach and extends outside the conservation easement several feet upgradient into the crop field. Below the headcut, Reach 1 appears to have undergone channel incision since the MY2 (2023) data collection resulting in sediment deposition downstream in the UT2 Reach 2 restoration reach. Please discuss this issue and any repair actions in the MY3 (2024) report since its development has occurred following the MY2 (2023) monitoring period. Please note that additional coordination with the IRT (through DMS) and an Adaptive Management Plan (AMP) may be required based on the proposed project repair efforts. Response: Noted. This area will be monitored in 2024 and discussed in the MY3 report. If action is required appropriate coordination with DMS / IRT will be enacted.

#### **Digital Deliverables:**

1. The digital deliverables were within specification. Please include a full copy of the digital files in the final report submittal.

Response: Understood. A final digital deliverable is included with this submittal.

# **General Notes**

- Several minor occurrences of easement encroachment continued during Year 2 (2023).
  - As agricultural encroachment in the form of scalloping between easement corners remained an issue during MY2, Restoration Systems (RS) installed horse tape in these areas in Q2 2023. This along with the additional easement signage installed in late 2022, has effectively ceased encroachment activities in these areas.
  - Several areas of agricultural herbicide overspray were observed during MY2 (2023) monitoring. The overspray resulted in an elevated rate of planted stem mortality in approximately 1.47 acres (9.2% of the planted area). RS continues to work with the landowner and tenant farmer to address overspray activities.
  - In late 2023, a combine was driven across the project near vegetation plot 1, where a preconstruction crossing once existed. This was the second occurrence of this type of encroachment in this area; the first occurred in late 2022. No evidence of impacts to the stream or wetland was observed by RS staff, who investigated the encroachment in late November 2023. Vegetation plot 1 was slightly affected by the encroachment. MY3 (2024) vegetation measurements will determine if any planted stems were affected. The landowner was notified, and additional signage added.
  - These areas are depicted on the CCPV with a total approximate acreage of 0.41 ac. The site photo log includes drone photos and ground photos of easement encroachment areas (Appendix A). RS continues to work with the landowner and farm operations to cease encroachment activities.
- Minor deer browse was observed on planted stems within the upper reaches of the Site. No evidence of beaver activity was observed.
- Encroachment areas (0.41 ac) and areas of low stem density due to herbicide overspray (1.47 ac) will be replanted with containerized stock from the approved planting list in winter 2023-2024. Only previously approved species will be used and the affected area (1.88 ac, 10.4%) of site is below the AMP threshold of 20% for replanting.

| Site | Maintenance | Report | (2023) |
|------|-------------|--------|--------|
|------|-------------|--------|--------|

| Invasive Species Work                            | Maintenance work                            |
|--------------------------------------------------|---------------------------------------------|
| Herbicide treatments: Parrotfeather, cattail,    |                                             |
| privet, chinaberry, autumn olive, princess tree, | 6/5/23: Scalloping by farmer observed,      |
| Johnson Grass                                    | landowner notification initiated.           |
|                                                  | 6/6/23, 6/7/23: Additional boundary marking |
| 7/3/2023, 7/16/2023, 7/23/2023, 7/24/2023        | and horse tape along perimeter installed.   |
| 8/5/2023, 8/16/2023                              |                                             |

# Streams

- Streams remained stable with little to no deviations from MYO.
- All engineered structures were stable and functioning within design parameters; no stream areas of concern were documented.
- One bankfull event was documented during MY2 (2023) (Table 11, Appendix D).

### Vegetation

 Measurements of all 18 vegetation plots resulted in an average of 337 approved stems/acre. Nine of the sixteen permanent vegetation plots and one of the two temporary transects met the interim stem density success criteria.

- Plots 9, 10, 14, and 16 have shown a great reduction in planted stem density when compared to MY0 measurements, especially in plot 9 where no planted stems survived (Table 8, Appendix B). During MY2 (2023), it was noted that these areas appear to be affected by herbicide overspray from adjacent agriculture fields, which caused significant planted stem mortality within and around the plots. RS continues to work with the landowner and tenant farmer to address these issues. The low stem density areas account for 9.2% of the planting area and will continue to be monitored during MY3-7.
- In late 2022, several clusters of parrot feather (*Myriophyllum aquaticum*) were identified in the riffles above cross-section 12 of Glen Branch at the top of the Site. It is believed these clusters washed into the Site from upstream waters. Treatment for parrot feather occurred throughout 2023 and appear to have significantly reduced the populations within the Site stream channel. Parrot feather treatment will continue as needed through the remainder of the monitoring period.

### Wetlands

- Four of the nine groundwater gauges met success criteria during MY2 (2023). Gauges 4, 6, 7, and 8 each had hydrology within 12 inches of the surface for the first 12% of the growing season except for a single day (April 6) where groundwater dropped below 12 inches. Gauge 2 had a hydroperiod of 5.35% of the growing season, with just 5 out of the first 30 days of the growing season having groundwater levels below 12 inches from the surface.
- When compared with 30-year 30-70th percentile rainfall, on-site rainfall amounts remained low through March, April, and May, apart from a 2-inch rainstorm on April 8 (Figure D1, Appendix D). With more consistent rainfall through the beginning of the growing season, it is expected that groundwater would remain sufficiently charged, and all gauges would have met the 12% hydroperiod performance standard early in the growing season.

| Gauge | 12% Hydroperiod Success Criteria Achieved - Max Consecutive Days During Growing Season (Percentage) |                           |                  |                  |                  |                  |                  |  |
|-------|-----------------------------------------------------------------------------------------------------|---------------------------|------------------|------------------|------------------|------------------|------------------|--|
|       | Year 1<br>(2022)                                                                                    | Year 2<br>(2023)          | Year 3<br>(2024) | Year 4<br>(2025) | Year 5<br>(2026) | Year 6<br>(2027) | Year 7<br>(2028) |  |
| 1     | No – 16 Days<br>(6.6%)                                                                              | Yes – 38 Days<br>(15.64%) |                  |                  |                  |                  |                  |  |
| 2     | No – 4 Days<br>(1.6%)                                                                               | No- 13 Days<br>(5.35%)    |                  |                  |                  |                  |                  |  |
| 3     | Yes – 50 Days<br>(20.6%)                                                                            | Yes – 69 Days<br>(28.4%)  |                  |                  |                  |                  |                  |  |
| 4     | No – 27 Days<br>(11.1%)                                                                             | No – 25 Days<br>(10.29%)  |                  |                  |                  |                  |                  |  |
| 5     | Yes – 30 Days<br>(12.3%)                                                                            | Yes – 36 Days<br>(14.81%) |                  |                  |                  |                  |                  |  |
| 6     | No – 8 Days<br>(3.3%)                                                                               | No – 20 Days<br>(8.23%)   |                  |                  |                  |                  |                  |  |
| 7     | No – 9 Days<br>(3.7%)                                                                               | No – 20 Days<br>(8.23%)   |                  |                  |                  |                  |                  |  |
| 8     | No – 6 Days<br>(2.5%)                                                                               | No – 20 Days<br>(8.23%)   |                  |                  |                  |                  |                  |  |
| 9     | Yes – 49 Days<br>(20.2%)                                                                            | Yes – 70 Days<br>(28.81%) |                  |                  |                  |                  |                  |  |

# MY2 (2023) Groundwater Hydrology Data

# Site Monitoring Activity and Reporting History

| Project Milestones     | Stream<br>Monitoring<br>Complete | Vegetation<br>Monitoring<br>Complete | Wetland<br>Monitoring | Data Analysis<br>Complete | Completion<br>or Delivery |
|------------------------|----------------------------------|--------------------------------------|-----------------------|---------------------------|---------------------------|
| Construction Earthwork |                                  |                                      |                       |                           | December 7, 2021          |
| Planting               |                                  |                                      |                       |                           | February 3, 2022          |
| As-Built Documentation | Feb. 8-9, 2022                   | February 8, 2022                     |                       | February 2022             | September 2022            |
| Year 1 Monitoring      | Sep. 18, 2022                    | August 24, 2022                      | Feb. – Nov. 2022      | November 2022             | February 2023             |
| Year 2 Monitoring      | April 3, 2023                    | August 30, 2023                      | Jan. – Nov. 2023      | November 2023             | February 2024             |

# Proposed Site Monitoring Schedule for MY3 (2024)

| Project Activities   | Schedule                                                                                                                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard Monitoring  | Visits at least quarterly                                                                                                                                                                                                              |
| Herbicide Treatments | Two visits, estimated July and September                                                                                                                                                                                               |
| Additional Planned   | Three planned additional visits with special attention to boundary issues<br>to coincide with major farm activities including (1) wheat harvest/bean<br>planting (2) Second herbicide application on beans and (3) soybean<br>harvest. |
| Other                | As needed based on agency visits and landowner requests                                                                                                                                                                                |

# FINAL MY2 MONITORING REPORT

### **NESBIT SITE**

Union County, North Carolina Catawba River Basin Cataloging Unit 03050103

DMS Project No. 100121 Full Delivery Contract No. 7868 DMS RFP No. 16-007704 (issued 9/6/2018) USACE Action ID No. SAW-2019-00832 DWR Project No. 2019-0862

Data Collection: January 2023-November 2023 Submission: February 2024

**Prepared for:** 

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652



Mitigation Services

Prepared by:

And



Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax)



Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

| 1   | PROJECT SUMMARY                               | 1 |
|-----|-----------------------------------------------|---|
| 1.1 | Project Background, Components, and Structure | 1 |
| 1.2 | Success Criteria                              | 4 |
| 2   | METHODS                                       | 4 |
| 3   | MONITORING YEAR 2 – DATA ASSESSMENT           | 6 |
| 3.1 | Stream Assessment                             | 6 |
| 3.2 | Wetland Assessment                            | 6 |
| 3.3 | Vegetative Assessment                         | 6 |
| 4   | REFERENCES                                    | 9 |

# LIST OF REPORT TABLES

| Table 1. Project Mitigation Quantities and Credits | 2 |
|----------------------------------------------------|---|
| Table 2. Summary: Goals, Performance, and Results  | 3 |
| Table 3. Proiect Attribute Table                   | 8 |
| Table A. Success Criteria                          | 4 |
| Table B. Monitoring Schedule                       | 4 |
| Table C. Monitoring Summary                        | 5 |

# APPENDICES

### Appendix A. Visual Assessment Data

- Figure 1. Current Conditions Plan View
- Table 4A-C. Visual Stream Morphology Stability Assessment Table
- Table 5. Vegetation Condition Assessment Table
- Vegetation Plot Photographs
- Site Photo Log

# **Appendix B. Vegetation Plot Data**

- Table 6A. Planted Bare-Root Woody Vegetation
- Table 6B-C. Permanent Seed Mixes
- Table 7. Vegetation Plot Counts and Densities
- Table 8. Vegetation Plot Data Table from Vegetation Data Entry Tool

### Appendix C. Stream Geomorphology Data

- Cross-Sections with Annual Overlays
- Table 9A-D. Baseline Stream Data Summary Tables
- Table 10A-C. Cross-Section Morphology Monitoring Summary

# Appendix D. Hydrologic Data

- Table 11. Verification of Bankfull Events
- Glen Branch Crest Gauge Graph
- Table 12. Groundwater Hydrology Data Groundwater Gauge Graphs
- Tables 13A-B. Channel Evidence
- Surface Water Gauge Graphs
- Figure D1. 30-70 Percentile Graph for Rainfall
- WETS Table

# Appendix E. Project Timeline and Contact Info

- Table 14. Project Timeline
- Table 15. Project Contacts

# 1 PROJECT SUMMARY

Restoration Systems, LLC (RS) has established the North Carolina Division of Mitigation Services (NCDMS) Nesbit Site (Site). The Site is on one parcel along the warm water Glen Branch and unnamed tributaries to Glen Branch in the Carolina Slate Belt portion of the Piedmont ecoregion of North Carolina. Located in the Catawba River Basin, cataloguing unit 03050103, the Site is in Targeted Local Watershed 030501003030030 and North Carolina Division of Water Resources (NCDWR) subbasin number 03-08-38. The Site is not located in a Local Watershed Plan (LWP), Regional Watershed Plan (RWP), or Targeted Resource Area (TRA). The Site watershed ranges from approximately 0.07 of a square mile (46 acres) on UT2 to 1.25 square miles (799 acres) at the Site's outfall.

# 1.1 Project Background, Components, and Structure

Located seven miles southwest of Monroe and five miles southeast of Waxhaw in the southwest corner of Union County near the North Carolina and South Carolina border, the Site encompasses 18.0 acres. Mitigation work within the Site included 1) stream restoration, 2) stream enhancement (Level I), 3) stream enhancement (Level II), 4) wetland reestablishment, 5) wetland rehabilitation, 6) wetland enhancement, and 7) vegetation planting. The Site is expected to provide 5198.736 warm water stream credits and 6.477 riparian wetland credits by closeout (Table 1, Page 2). A conservation easement was granted to the State of North Carolina and recorded at the Union County Register of Deeds on August 28, 2020.

Before construction, the Site was characterized by agricultural row crops. Site design was completed in June 2021. Construction started on October 7, 2021 and ended within a final walkthrough on December 20, 2021. The Site was planted on February 3, 2022. Completed project activities, reporting history, completion dates, and project contacts are summarized in Tables 14-15 (Appendix E).

Space purposefully left blank

#### Table 1. Nesbit Mitigation Site (ID-100121) Project Mitigation Quantities and Credits

| Project Segment         | Original<br>Mitigation<br>Plan<br>Ft/Ac | As-Built<br>Ft/Ac | Original<br>Mitigation<br>Category | Original<br>Restoration<br>Level | Original<br>Mitigation<br>Ratio (X:1) | Credits   |
|-------------------------|-----------------------------------------|-------------------|------------------------------------|----------------------------------|---------------------------------------|-----------|
| Stream                  |                                         |                   |                                    |                                  | •                                     |           |
| Glen Br Reach 1         | 1275                                    | 1260              | Warm                               | R                                | 1.00000                               | 1,275.000 |
| Glen Br Reach 2         | 63                                      | 62                | Warm                               | EI                               | 1.50000                               | 42.000    |
| Glen Br Reach 3         | 2776                                    | 2763              | Warm                               | R                                | 1.00000                               | 2,776.000 |
| UT 1A                   | 314                                     | 314               | Warm                               | EII                              | 5.00000                               | 62.800    |
| UT 1 Reach 1            | 253                                     | 253               | Warm                               | EI                               | 2.50000                               | 101.200   |
| UT 1 Reach 2            | 381                                     | 373               | Warm                               | R                                | 1.00000                               | 381.000   |
| UT 1 Reach 3            | 115                                     | 116               | Warm                               | EII                              | 2.50000                               | 46.000    |
| UT 1 Reach 4            | 171                                     | 169               | Warm                               | R                                | 1.00000                               | 171.000   |
| UT 2 Reach 1            | 112                                     | 112               | Warm                               | EII                              | 2.50000                               | 44.800    |
| UT 2 Reach 2            | 197                                     | 197               | Warm                               | R                                | 1.00000                               | 197.000   |
|                         |                                         |                   |                                    |                                  | Total:                                | 5,096.800 |
| Wetland                 |                                         |                   |                                    |                                  |                                       |           |
| Wetland Reestablishment | 5.338                                   | 5.338             | R                                  | REE                              | 1.00000                               | 5.338     |
| Wetland Rehabilitation  | 0.902                                   | 0.902             | R                                  | RH                               | 1.50000                               | 0.601     |
| Wetland Enhancement     | 1.075                                   | 1.075             | R                                  | E                                | 2.00000                               | 0.538     |
|                         |                                         |                   |                                    |                                  | Total:                                | 6.477     |

#### **Project Credits**

|                   |           | Stream |       | Riparian | Non-Rip | Coastal |
|-------------------|-----------|--------|-------|----------|---------|---------|
| Restoration Level | Warm      | Cool   | Cold  | Wetland  | Wetland | Marsh   |
| Restoration       | 4,800.000 | 0.000  | 0.000 | 0.000    | 0.000   | 0.000   |
| Re-establishment  |           |        |       | 5.338    | 0.000   | 0.000   |
| Rehabilitation    |           |        |       | 0.601    | 0.000   | 0.000   |
| Enhancement       |           |        |       | 0.538    | 0.000   | 0.000   |
| Enhancement I     | 143.200   | 0.000  | 0.000 |          |         |         |
| Enhancement II    | 153.600   | 0.000  | 0.000 |          |         |         |
| Preservation      |           |        |       | 0.000    | 0.000   | 0.000   |
| Benthics          | 101.936   | 0.000  | 0.000 | 0.000    | 0.000   |         |
| Totals            | 5,198.736 | 0.000  | 0.000 | 6.477    | 0.000   | 0.000   |

Total Stream Credit Total Wetland Credit

6.477

5,198.736

#### Wetland Mitigation Category

#### **Restoration Level**

CM Coastal Marsh R Riparian NR Non-Riparian

| HQP | High Quality Preservation              |
|-----|----------------------------------------|
| Р   | Preservation                           |
| E   | Wetland Enhancement - Veg and Hydro    |
| Ell | Stream Enhancement II                  |
| EI  | Stream Enhancement I                   |
| С   | Wetland Creation                       |
| RH  | Wetland Rehabilitation - Veg and Hydro |

 RH
 Wetland Rehabilitation - Veg and Hydro

 REE
 Wetland Re-establishment Veg and Hydro

R Restoration

| Table 2. Summary: Goals, Performance, and Results | Table 2 | . Summary: | Goals, | Performance, | and | Results |
|---------------------------------------------------|---------|------------|--------|--------------|-----|---------|
|---------------------------------------------------|---------|------------|--------|--------------|-----|---------|

| Goals                                                                                                                                                     | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Success Criteria                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (1) HYDROLOGY                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| <ul> <li>Minimize downstream<br/>flooding to the maximum<br/>extent possible.</li> <li>Connect streams to<br/>functioning wetland<br/>systems.</li> </ul> | <ul> <li>Construct a new channel at historic floodplain<br/>elevation to restore overbank flows and<br/>restore/enhance jurisdictional wetlands</li> <li>Plant woody riparian buffer</li> <li>Install marsh treatment areas</li> <li>Remove agricultural row crops</li> <li>Deep rip floodplain soils to reduce<br/>compaction and increase soil surface<br/>roughness</li> <li>Protect riparian buffers with a perpetual<br/>conservation easement</li> </ul>                                                  | <ul> <li>BHR not to exceed 1.2</li> <li>Document four overbank events in separate monitoring years</li> <li>Attain Wetland Hydrology Success Criteria</li> <li>Attain Vegetation Success Criteria</li> <li>Conservation Easement recorded</li> </ul>                                                                             |  |  |  |
| <ul> <li>Increase stream stability<br/>within the Site so that<br/>channels are neither<br/>aggrading nor degrading.</li> </ul>                           | <ul> <li>Construct channels with a proper pattern,<br/>dimension, and longitudinal profile</li> <li>Remove agricultural row crops</li> <li>Construct stable channels with the<br/>appropriate substrate</li> <li>Upgrade forded crossings</li> <li>Plant woody riparian buffer</li> <li>Stabilize stream banks</li> </ul>                                                                                                                                                                                       | <ul> <li>Cross-section measurements indicate a stable channel with the appropriate substrate</li> <li>Visual documentation of stable channels and structures</li> <li>BHR not to exceed 1.2</li> <li>&lt; 10% change in BHR in any given year</li> <li>Attain Vegetation Success Criteria</li> </ul>                             |  |  |  |
| (1) WATER QUALITY                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| <ul> <li>Remove direct nutrient<br/>and pollutant inputs from<br/>the Site and reduce<br/>contributions to<br/>downstream waters.</li> </ul>              | <ul> <li>Remove agricultural row crops and reduce<br/>agricultural land/inputs</li> <li>Install marsh treatment areas</li> <li>Plant woody riparian buffer</li> <li>Restore/enhance jurisdictional wetlands<br/>adjacent to Site streams</li> <li>Provide surface roughness and reduce<br/>compaction through deep ripping/plowing</li> <li>Restore overbank flooding by constructing<br/>channels at historic floodplain elevation</li> </ul>                                                                  | <ul> <li>Attain Wetland Hydrology Success Criteria</li> <li>Attain Vegetation Success Criteria</li> </ul>                                                                                                                                                                                                                        |  |  |  |
| (1) HABITAT                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| - Improve instream and streamside habitat.                                                                                                                | <ul> <li>Construct stable channels with the appropriate substrate</li> <li>Plant woody riparian buffer to provide organic matter and shade</li> <li>Construct a new channel at historic floodplain elevation to restore overbank flows</li> <li>Plant woody riparian buffer</li> <li>Protect riparian buffers with a perpetual conservation easement</li> <li>Restore/enhance jurisdictional wetlands adjacent to Site streams</li> <li>Stabilize stream banks</li> <li>Install in-stream structures</li> </ul> | <ul> <li>Cross-section measurement indicates a stable<br/>channel with the appropriate substrate</li> <li>Visual documentation of stable channels and<br/>in-stream structures</li> <li>Attain Wetland Hydrology Success Criteria</li> <li>Attain Vegetation Success Criteria</li> <li>Conservation Easement recorded</li> </ul> |  |  |  |

# 1.2 Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives identified from on-site North Carolina Stream Assessment Method (NC SAM) data collection (NC SFAT 2015). From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving success criteria. The following summarizes Site success criteria.

# Table A. Success Criteria

| Str | eams                                                                                                           |
|-----|----------------------------------------------------------------------------------------------------------------|
| •   | All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.                                   |
| •   | A continuous surface flow must be documented each year for at least 30 consecutive days.                       |
| •   | Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.                                       |
| •   | BHR at any measure riffle cross-section should not change by more than 10% from baseline condition during      |
|     | any given monitoring period.                                                                                   |
| ٠   | The stream project shall remain stable, and all other performance standards shall be met through four separate |
|     | bankfull events, occurring in individual years, during the monitoring years 1-7.                               |

• Intermittent streams will demonstrate at least 30-days consecutive flow.

### Wetland Hydrology

• Annual saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 12 percent of the growing season during average climatic conditions.

### Vegetation

- Within planted portions of the Site, a minimum of 320 stems per acre must be present at year 3; a minimum of 260 stems per acre must be present at year 5; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5 and 10 feet in height at year 7 in each plot.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the Site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.

# 2 METHODS

Monitoring will be conducted in accordance with 2016 North Carolina Interagency Review Team (NCIRT) Guidelines. Monitoring will be conducted by Axiom Environmental, Inc based on the schedule in the following table. A monitoring summary is outlined in the table on page 6. Annual monitoring reports will be submitted to the NCDMS by Restoration Systems no later than December 1 of each monitoring year data is collected.

| Resource           | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 |
|--------------------|--------|--------|--------|--------|--------|--------|--------|
| Streams            | х      | х      | х      |        | х      |        | х      |
| Wetlands           | х      | х      | х      | х      | х      | х      | х      |
| Vegetation         | х      | х      | x      |        | х      |        | х      |
| Macroinvertebrates |        |        | х      |        | х      |        | х      |
| Visual Assessment  | х      | х      | х      | х      | х      | х      | х      |
| Report Submittal   | х      | х      | х      | х      | x      | х      | x      |

# Table B. Monitoring Schedule

#### **Table C. Monitoring Summary**

| Stream Parameters               |                                                                                                                                                         |                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                        |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                       | Method                                                                                                                                                  | Schedule/Frequency                                                                                                                         | Number/Extent                                                                   | Data Collected/Reported                                                                                                                                                                                                |  |  |  |
| Stream Profile                  | Full longitudinal survey                                                                                                                                | As-built (unless otherwise required)                                                                                                       | All restored stream channels                                                    | Graphic and tabular data.                                                                                                                                                                                              |  |  |  |
| Stream Dimension                | Cross-sections                                                                                                                                          | Years 1, 2, 3, 5, and 7                                                                                                                    | Total of 12 cross-sections on<br>restored channels                              | Graphic and tabular data.                                                                                                                                                                                              |  |  |  |
| Channel Stability               | Visual Assessments                                                                                                                                      | Yearly                                                                                                                                     | All restored stream channels                                                    | Areas of concern will be depicted on a plan view<br>figure with a written assessment and photographs                                                                                                                   |  |  |  |
|                                 | Additional Cross-sections                                                                                                                               | Yearly                                                                                                                                     | Only if instability is documented<br>during monitoring                          | Graphic and tabular data.                                                                                                                                                                                              |  |  |  |
| Stream Hydrology                | Continuous monitoring of surface water<br>gauges and/or trail camera                                                                                    | Continuous recording through<br>the monitoring period                                                                                      | 1 surface water gauge on UT1 and<br>1 surface water gauge on UT2                | Surface water data for each monitoring period                                                                                                                                                                          |  |  |  |
| Bankfull Evonts                 | Continuous monitoring of surface water gauges and/or trail camera                                                                                       | Continuous recording through<br>the monitoring period                                                                                      | 1 surface water gauges on Glen<br>Branch                                        | Surface water data for each monitoring period                                                                                                                                                                          |  |  |  |
| Bankiun Events                  | Visual/Physical Evidence                                                                                                                                | Continuous through the<br>monitoring period                                                                                                | All restored stream channels                                                    | Visual evidence, photo documentation, and/or rain data.                                                                                                                                                                |  |  |  |
| Benthic<br>Macroinvertebrates   | "Qual 4" method described in Standard<br>Operating Procedures for Collection and<br>Analysis of Benthic Macroinvertebrates,<br>Version 5.0 (NCDWR 2016) | Pre-construction, Years 3, 5,<br>and 7 during the "index<br>period" referenced in Small<br>Streams Biocriteria<br>Development (NCDWQ 2009) | 3 stations (Glen Br upper and<br>lower reaches, and the lower<br>reach of UT 1) | Results* will be presented on a site-by-site basis<br>and will include a list of taxa collected, an<br>enumeration of <i>Ephemeroptera, Plecoptera,</i> and<br><i>Tricopetera</i> taxa as well as Biotic Index values. |  |  |  |
|                                 |                                                                                                                                                         | Wetland Param                                                                                                                              | neters                                                                          |                                                                                                                                                                                                                        |  |  |  |
| Parameter                       | Method                                                                                                                                                  | Schedule/Frequency                                                                                                                         | Number/Extent                                                                   | Data Collected/Reported                                                                                                                                                                                                |  |  |  |
| Wetland Restoration             | Groundwater gauges                                                                                                                                      | Years 1, 2, 3, 4, 5, 6, and 7<br>throughout the year with the<br>growing season defined as<br>March 17-November 14**                       | 9 gauges spread throughout restored wetlands                                    | Groundwater and rain data for each monitoring period                                                                                                                                                                   |  |  |  |
|                                 |                                                                                                                                                         | Vegetation Para                                                                                                                            | meters                                                                          |                                                                                                                                                                                                                        |  |  |  |
| Parameter                       | Method                                                                                                                                                  | Schedule/Frequency                                                                                                                         | Number/Extent                                                                   | Data Collected/Reported                                                                                                                                                                                                |  |  |  |
| Vegetation<br>establishment and | Permanent vegetation plots 0.0247 acre<br>(100 square meters) in size; CVS-EEP<br>Protocol for Recording Vegetation,<br>Version 4.2 (Lee et al. 2008)   | As-built, Years 1, 2, 3, 5, and 7                                                                                                          | 16 plots spread across the Site                                                 | Species, height, planted vs. volunteer, stems/acre                                                                                                                                                                     |  |  |  |
| VIGOI                           | Annual random vegetation plots, 0.0247<br>acre (100 square meters) in size                                                                              | As-built, Years 1, 2, 3, 5, and 7                                                                                                          | Only if poor vegetation grow is<br>documented during monitoring                 | Species and height                                                                                                                                                                                                     |  |  |  |

\*Benthic Macroinvertebrate sampling data will not be tied to success criteria; however, the data may be used as a tool to observe positive gains to in-stream habitat.

\*\*In accordance with IRT request after submittal of the MYO report, the growing season for this site will be based on the latest 30-year WETS data (Station Monroe 2 SE, NC, 1991-2021) and is defined as March 17 to November 14 (243 days). Soil temperature and bud burst documentation will not be required to verify growing season start dates.

# 3 MONITORING YEAR 2- DATA ASSESSMENT

Annual monitoring and site visits were conducted between January and November 2023 to assess the condition of the project. Stream, wetland, and vegetation criteria for the Site follow the approved success criteria presented in the Mitigation Plan and summarized in Section 1.2; monitoring methods are detailed in Section 2.

# 3.1 Stream Assessment

Morphological surveys for MY2 were conducted in April 2023 and stream reaches were visually inspected during subsequent monitoring visits. All streams within the Site are stable and functioning as designed. Site streams continue to maintain an ordinary high-water mark, and no cross-sections have bank height ratios greater than 1.2. No stream areas of concern were identified during MY2. Refer to Appendix A for the Visual Stream Morphology Stability Assessment Table and Stream Photographs. Refer to Appendix C for Stream Geomorphology Data.

One bankfull event was documented during MY2 (2023) for a total of 2 bankfull events; one during each of the 2 monitoring years (Table 10, Appendix D). Additionally, UT1 and UT2 each maintained flow for well over 30 consecutive days during MY2, with 158 and 132 days respectively (Tables 13A-B, Appendix D).

# 3.2 Wetland Assessment

Four of the nine groundwater gauges met success criteria during MY2 (2023). Gauges 4, 6, 7, and 8 each had hydrology within 12 inches of the surface for the first 12% of the growing season except for a single day (April 6) where groundwater dropped below 12 inches. Gauge 2 had a hydroperiod of 5.35% of the growing season, with just 5 out of the first 30 days of the growing season having groundwater levels below 12 inches from the surface.

When compared with 30-year 30-70th percentile rainfall, on-site rainfall amounts remained low through March, April, and May, apart from a 2-inch rainstorm on April 8 (Figure D1, Appendix D). With more consistent rainfall through the beginning of the growing season, it is expected that groundwater would remain sufficiently charged, and all gauges would have met the 12% hydroperiod performance standard early in the growing season.

# 3.3 Vegetative Assessment

The MY2 vegetative survey was completed on August 30, 2023. Vegetation monitoring resulted in a sitewide stem density average of 337 planted stems per acre, above the interim requirement of 320 stems per acre at MY3. Nine of the sixteen permanent vegetation plots and one of the two temporary transects met the interim stem density success criteria. Please refer to Appendix A for Vegetation Plot Photographs and the Vegetation Condition Assessment Table, and Appendix B for Vegetation Plot Data.

Plots 9, 10, 14, and 16 have shown a great reduction in planted stem density when compared to MY0 measurements, especially in plot 9 where no planted stems survived (Table 8, Appendix B). During MY2 (2023), it was noted that these areas appear to be affected by herbicide overspray from adjacent agriculture fields, which caused significant planted stem mortality within and around the plots. RS continues to work with the landowner and tenant farmer to address these issues. Other isolated instances of planted stem mortality can be attributed to competition from a dense herbaceous layer and scattered occurrences of invasive species. Invasive species observed included cattail, privet, chinaberry, autumn olive, princess tree, and Johnson grass, which were both treated over multiple Site visits during July and August 2023. It is expected that invasive species treatments will help reduce competition and decrease planted stem mortality rates, although the majority of the planted stem mortality observed during MY2 can be attributed to the aforementioned agricultural herbicide overspray. Low stem density areas account for 9.2% of the planting area and will continue to be monitored during MY3-7. Live stakes planted along stream banks are generally vigorous and were not observed to be affected by herbaceous competition or herbicide overspray.

In late 2022, several clusters of parrot feather (*Myriophyllum aquaticum*) were identified in the riffles above cross-section 12 of Glen Branch at the top of the Site. It is believed these clusters washed into the Site from upstream waters. Treatment for parrot feather occurred throughout summer 2023 and appear to have significantly reduced the populations within the Site stream channel. Parrot feather treatment will continue as needed through the remainder of the monitoring period.

|                                                               | Table 3. Proje   | ect Attribute Tabl           | e                          |                    |                            |  |
|---------------------------------------------------------------|------------------|------------------------------|----------------------------|--------------------|----------------------------|--|
|                                                               | Project          | Information                  |                            |                    |                            |  |
| Project Name                                                  |                  |                              | N                          | esbit Site         |                            |  |
| Project County                                                |                  | Union County, North Carolina |                            |                    |                            |  |
| Project Area (acres)                                          |                  | 18                           |                            |                    |                            |  |
| Project Coordinates (latitude & latitude)                     | _                |                              | 34.89                      | 36, -80.6544       |                            |  |
| Planted Area (acres)                                          |                  |                              |                            | 16                 |                            |  |
|                                                               | Project Watershe | d Summary Informa            | ation                      |                    |                            |  |
| Physiographic Province                                        |                  |                              | Р                          | iedmont            |                            |  |
| Project River Basin                                           |                  |                              | (                          | Catawba            |                            |  |
| USGS HUC for Project (14-digit)                               |                  | 0305                         | 0103030030                 |                    |                            |  |
| NCDWR Sub-basin for Project                                   |                  | 0                            | )3-08-38                   |                    |                            |  |
| Project Drainage Area (acres)                                 |                  |                              | 798.8                      |                    |                            |  |
| Percentage of Project Drainage Area that is Impervio          |                  |                              | <5%                        |                    |                            |  |
| CGIA Land Use Classification                                  |                  |                              | Managed I                  | Herbaceous Cover   |                            |  |
|                                                               | Reach Sum        | mary Information             |                            |                    |                            |  |
| Parameters                                                    | Glen Br Upstream | Glen Br<br>Downstream        | UT 1A                      | UT1                | UT 2                       |  |
| Length of reach (linear feet)                                 | 1586             | 2499                         | 314                        | 971                | 309                        |  |
| Valley Classification & Confinement                           |                  |                              | Alluvial, confined         | d                  |                            |  |
| Drainage Area (acres)                                         | 494.6            | 798.8                        | 152.6                      | 176.7              | 45.6                       |  |
| NCDWR Stream ID Score                                         |                  |                              | 28                         | 33                 | 30                         |  |
| Stream Thermal Regime                                         |                  |                              | Warm                       |                    |                            |  |
| Perennial, Intermittent, Ephemeral                            | Perennial        | Perennial                    | Perennial/<br>Intermittent | Perennial          | Perennial/<br>Intermittent |  |
| NCDWR Water Quality Classification                            |                  |                              | С                          |                    |                            |  |
| Existing Morphological Description (Rosgen 1996)              | Cg4              | Eg 4                         |                            | Eg 4               | Eg 6                       |  |
| Proposed Stream Classification (Rosgen 1996)                  | Ce 3/4           | Ce 3/4                       |                            | Ce 3/4             | Ce 3/4                     |  |
| Existing Evolutionary Stage (Simon and Hupp 1986)             | III/IV           | III/IV                       | ш                          | 11/111             | 11/111                     |  |
| Underlying Mapped Soils                                       |                  |                              | Secrest Cid compl          | lex                |                            |  |
| Drainage Class                                                |                  | Sor                          | mewhat poorly dra          | ained              |                            |  |
| Hydric Soil Status                                            |                  | Nonhydric                    | (may contain hydr          | ric inclusions)    |                            |  |
| Valley Slope                                                  | 0.0077           | 0.0048                       | 0.0204                     | 0.0086             | 0.0147                     |  |
| FEMA Classification                                           | AE floodway      | AE floodway                  | NA                         | NA                 | AE floodway                |  |
| Native Vegetation Community                                   |                  | Piedmont Alluvial            | Forest/Dry-Mesic           | Oak-Hickory Fore   | st                         |  |
| Watershed Land Use/Land Cover (Site)                          | 30% fo           | rest, 65% ag. land, !        | 5% low density re          | sidential/impervio | us surface                 |  |
| Watershed Land Use/Land Cover (Uwharrie<br>Reference Channel) |                  |                              | 100% forest                |                    |                            |  |
| Percent Composition of Exotic Invasive Vegetation             |                  |                              | 15%                        |                    |                            |  |

| Wet                                         | land Summary Informa      | tion                                    |                   |                                  |  |  |
|---------------------------------------------|---------------------------|-----------------------------------------|-------------------|----------------------------------|--|--|
| Parameters                                  |                           |                                         | Wetlands          |                                  |  |  |
| Wetland acreage                             |                           | 5.338 acres reestablished & 1.977 acres |                   |                                  |  |  |
|                                             |                           | enha                                    | anced/rehabilitat | ed                               |  |  |
| Wetland Type                                |                           | F                                       | liparian riverine |                                  |  |  |
| Mapped Soil Series                          | Sec                       | crest Cid Complex                       | ĸ                 |                                  |  |  |
| Drainage Class                              |                           | Some                                    | what Poorly drai  | ned                              |  |  |
| Hydric Soil Status                          |                           | Nonhydric (m                            | ay contain hydrio | inclusions)                      |  |  |
| Source of Hydrology                         | Groundy                   | vater, stream ove                       | erbank            |                                  |  |  |
| Hydrologic Impairment                       | Incised streams           | s, compacted soil                       | s, agriculture    |                                  |  |  |
| Native Vegetation Community                 |                           | Piedmont/Lo                             | w Mountain Allu   | vial Forest                      |  |  |
| % Composition of Exotic Invasive Vegetation |                           | <5%                                     |                   |                                  |  |  |
| Restoration Method                          | Hydrologic and vegetative |                                         |                   |                                  |  |  |
| Enhancement Method                          |                           |                                         |                   |                                  |  |  |
| Re                                          | egulatory Consideration   | ns                                      |                   |                                  |  |  |
| Regulation                                  | Applicab                  | plicable? Resolved? Support             |                   |                                  |  |  |
| Waters of the United States-Section 401     | Yes                       |                                         | Yes               | Section 401<br>Certification     |  |  |
| Waters of the United States-Section 404     | Yes                       |                                         | Yes               | Section 404<br>Permit            |  |  |
| Endangered Species Act                      | Yes                       | es Yes                                  |                   | CE Document<br>(App E)           |  |  |
| Historic Preservation Act                   | Yes                       |                                         | Yes               | CE Document<br>(App E)           |  |  |
| Coastal Zone Management Act                 | No                        |                                         |                   | NA                               |  |  |
| FEMA Floodplain Compliance                  | Yes                       |                                         | Yes               | DMS FEMA<br>Checklist (App<br>E) |  |  |
| Essential Fisheries Habitat                 | No                        |                                         |                   | NA                               |  |  |

# 4 REFERENCES

- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version
   4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement
   Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP 2007). Lower Catawba River Basin Restoration Priorities 2007 (online). Available:

https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed\_Planning/Catawba\_River\_Basin/RBRP\_2 007%20Lower%20CAT\_032013%20Final.pdf. North Carolina Department of Environment and Natural Resources, Raleigh (December 18, 2018).

- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.

# Appendix A: Visual Assessment Data

Figure 1. Current Conditions Plan View Table 4A-C. Visual Stream Morphology Stability Assessment Table Table 5. Vegetation Condition Assessment Table Vegetation Plot Photographs Site Photo Log



#### Table 4A. Visual Stream Stability Assessment

Glen Branch Reach Assessed Stream Length 4085

| Assessed Bar | nk Length                  | 8170                                                                                                                                                                    |                                                |                             |                                  |                                        |
|--------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------|----------------------------------------|
| Major        | r Channel Category         | Metric                                                                                                                                                                  | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-built | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended |
| Bank         | Surface Scour/Bare<br>Bank | Bank lacking vegetative cover resulting simply from poor growth and/or surface scour                                                                                    |                                                |                             | 0                                | 100%                                   |
|              | Toe Erosion                | Bank toe eroding to the extent that bank failure appears likely.<br>Does <u>NOT</u> include undercuts that are modest, appear sustainable<br>and are providing habitat. |                                                |                             | 0                                | 100%                                   |
|              | Bank Failure               | Fluvial and geotechnical - rotational, slumping, calving, or collapse                                                                                                   |                                                |                             | 0                                | 100%                                   |
|              |                            |                                                                                                                                                                         |                                                | Totals                      | 0                                | 100%                                   |
| Structure    | Grade Control              | Grade control structures exhibiting maintenance of grade across the sill.                                                                                               | 32                                             | 32                          |                                  | 100%                                   |
|              | Bank Protection            | Bank erosion within the structures extent of influence does <u>not</u><br>exceed 15%. (See guidance for this table in DMS monitoring<br>guidance document)              | 32                                             | 32                          |                                  | 100%                                   |

#### Table 4B. Visual Stream Stability Assessment

UT 1 Reach Assessed Stream Length Assessed Bank Length

971 1942

| Assessed Ban | ik Length                  | 1942                                                                                                                                                                    |                                                |                             |                                  |                                        |
|--------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------|----------------------------------------|
| Major        | Channel Category           | Metric                                                                                                                                                                  | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-built | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended |
| Bank         | Surface Scour/Bare<br>Bank | Bank lacking vegetative cover resulting simply from poor growth and/or surface scour                                                                                    |                                                |                             | 0                                | 100%                                   |
|              | Toe Erosion                | Bank toe eroding to the extent that bank failure appears likely.<br>Does <u>NOT</u> include undercuts that are modest, appear sustainable<br>and are providing habitat. |                                                |                             | 0                                | 100%                                   |
|              | Bank Failure               | Fluvial and geotechnical - rotational, slumping, calving, or collapse                                                                                                   |                                                |                             | 0                                | 100%                                   |
|              |                            |                                                                                                                                                                         |                                                | Totals                      | 0                                | 100%                                   |
| Structure    | Grade Control              | Grade control structures exhibiting maintenance of grade across the sill.                                                                                               | 15                                             | 15                          |                                  | 100%                                   |
|              | Bank Protection            | Bank erosion within the structures extent of influence does <u>not</u><br>exceed 15%. (See guidance for this table in DMS monitoring<br>guidance document)              | 15                                             | 15                          |                                  | 100%                                   |

#### Table 4C. Visual Stream Stability Assessment

UT 2 Reach Assessed Stream Length Assessed Bank Length

309 618

| Major     | Channel Category           | Metric                                                                                                                                                                  | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-built | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended |
|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------|----------------------------------------|
| Bank      | Surface Scour/Bare<br>Bank | Bank lacking vegetative cover resulting simply from poor growth and/or surface scour                                                                                    |                                                |                             | 0                                | 100%                                   |
|           | Toe Erosion                | Bank toe eroding to the extent that bank failure appears likely.<br>Does <u>NOT</u> include undercuts that are modest, appear sustainable<br>and are providing habitat. |                                                |                             | 0                                | 100%                                   |
|           | Bank Failure               | Fluvial and geotechnical - rotational, slumping, calving, or collapse                                                                                                   |                                                |                             | 0                                | 100%                                   |
|           | -                          |                                                                                                                                                                         |                                                | Totals                      | 0                                | 100%                                   |
| Structure | Grade Control              | Grade control structures exhibiting maintenance of grade across the sill.                                                                                               | 4                                              | 4                           |                                  | 100%                                   |
|           | Bank Protection            | Bank erosion within the structures extent of influence does <u>not</u><br>exceed 15%. (See guidance for this table in DMS monitoring<br>guidance document)              | 4                                              | 4                           |                                  | 100%                                   |

# Table 5. Visual Vegetation Assessment

| Planted acreage            | 16.0                                                                                                                                                                                       |                      |                     |                         |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-------------------------|
| Vegetation Category        | Definitions                                                                                                                                                                                | Mapping<br>Threshold | Combined<br>Acreage | % of Planted<br>Acreage |
| Bare Areas                 | Very limited cover of both woody and herbaceous material.                                                                                                                                  | 0.10 acres           | 0.00                | 0.0%                    |
| Low Stem Density Areas     | Woody stem densities clearly below target levels based on current MY stem count criteria. These three areas appear to be affected by herbicide overspray from adjacent agriculture fields. | 0.10 acres           | 1.47                | 9.2%                    |
|                            |                                                                                                                                                                                            | Total                | 1.47                | 9.2%                    |
| Areas of Poor Growth Rates | Planted areas where average height is not meeting current MY Performance Standard.                                                                                                         | 0.10 acres           | 0.00                | 0.0%                    |
| Cumulative Total           |                                                                                                                                                                                            |                      |                     | 9.2%                    |

| Easement Acreage            | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|--------------------------|
| Vegetation Category         | Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mapping<br>Threshold | Combined<br>Acreage | % of Easement<br>Acreage |
| Invasive Areas of Concern   | Invasives may occur outside of planted areas and within the easement and will therefore be calculated against the total easement acreage- Include species with the potential to directly outcompete native, young, woody stems in the short-term or community structure for existing communities. Species included in summation above should be identified in report summary.                                                                                            | 0.10 acres           | 0.00                | 0.0%                     |
| Easement Encroachment Areas | Ten areas of scalloping between easement corners by row crop equipment. One area where a piece of heavy machinery drove across the easement (near vegetation plot 1). The areas have been marked with horse tape and additional easement signage. The 3 low stem density polygons (1.47 acres) listed above are included here as well, since herbicide overspray, which is the primary cause of stem mortality in these areas, is also considered easement encroachment. | none                 | 14 polygons -       | 1.88 acres total         |

Nesbit Site MY2 (2023) Vegetation Monitoring Photographs

















Appendix A: Visual Assessment Data

Nesbit Site MY2 (2023) Vegetation Monitoring Photographs



# Nesbit Site MY2 (2023) Transect Monitoring Photographs
















































# **Appendix B: Vegetation Data**

Table 6A. Planted Bare-Root Woody VegetationTable 6B-C. Permanent Seed MixesTable 7. Vegetation Plot Counts and DensitiesTable 8. Vegetation Plot Data Table from Vegetation Data Entry Tool

# Table 6A. Planted Bare Root Woody VegetationNesbit Site

| Vegetation Association                 | Piedmont/<br>Bottomlar | /Mountain<br>nd Forest* | Dry-Me<br>Hickory | sic Oak-<br>Forest* | Strean<br>Assemb | n-side<br>lage** | TOTAL     |
|----------------------------------------|------------------------|-------------------------|-------------------|---------------------|------------------|------------------|-----------|
| Area (acres)                           | 7.                     | .2                      | 5                 | .0                  | 3.               | 16.0             |           |
| Species                                | # planted*             | % of total              | # planted*        | % of total          | # planted**      | % of total       | # planted |
| River birch (Betula nigra)             | 250                    | 5                       |                   |                     | 1750             | 17               | 2000      |
| Shagbark hickory (Carya cordiformis)   | 500                    | 10                      |                   |                     |                  |                  | 500       |
| Hackberry (Celtis occidentalis)        | 400                    | 8                       |                   |                     | 600              | 6                | 1000      |
| Red bud (Cercis canadensis)            |                        |                         | 600               | 18                  |                  |                  | 600       |
| Silky dogwood (Cornus amomum)          | 350                    | 7                       |                   |                     | 2150             | 21               | 2500      |
| Persimmon (Diospyros virginiana)       |                        |                         | 500               | 15                  |                  |                  | 500       |
| Green ash (Fraxinus pennsylvanica)     | 200                    | 4.5                     |                   |                     | 700              | 7                | 900       |
| Tulip poplar (Liriodendron tulipifera) | 200                    | 4.5                     | 150               | 4                   | 650              | 6.5              | 1000      |
| Red mulberry (Morus rubra)             |                        | -                       | 150               | 4                   | 350              | 3                | 500       |
| Black gum (Nyssa sylvatica)            | 300                    | 6                       |                   |                     | 950              | 9                | 1250      |
| Sycamore (Platanus occidentalis)       | 400                    | 8                       | 150               | 4                   | 1700             | 16.5             | 2250      |
| White oak (Quercus alba)               | 200                    | 4.5                     | 150               | 4                   | 650              | 6                | 1000      |
| Water oak (Quercus nigra)              | 1000                   | 20                      | 1000              | 30                  |                  |                  | 2000      |
| Willow oak (Quercus phellos)           | 200                    | 4.5                     |                   |                     | 800              | 8                | 1000      |
| Red oak (Quercus rubra)                |                        |                         | 500               | 15                  |                  |                  | 500       |
| Shumard oak (Quercus shumardii)        | 600                    | 12                      |                   |                     |                  |                  | 600       |
| American elm (Ulmus americana)         | 300                    | 6                       | 200               | 6                   |                  |                  | 500       |
| TOTAL                                  | 4900                   | 100                     | 3400              | 100                 | 10300            | 100              | 18600     |

#### Table 6B. Permanent Seed Mix Nesbit Site – Sitewide Mix

| Species*                   | Percentage | Species*                 | Percentage |
|----------------------------|------------|--------------------------|------------|
| Achillea millefolium       | 0.4        | Gaillardia perennial     | 2          |
| Agrostis gigantea          | 15         | Helianthus angustifolius | 1          |
| Agrostis hyemalis          | 5          | Heliopsis helianthoides  | 1          |
| Agrostis stolonifera       | 2          | Hibiscus moscheutos      | 0.5        |
| Baptisia australis         | 2          | Juncus tenuis            | 0.5        |
| Carex vulpinoidea          | 1          | Lespedeza capitata       | 0.5        |
| Chamaecrista fasciculata   | 1          | Liatris spicata          | 1          |
| Chamaecrista nictitans     | 1          | Monarda fistulosa        | 0.5        |
| Chrysanthemum leucanthemum | 4.5        | Panicum clandestinum     | 5          |
| Chrysanthemum x superbum   | 3          | Panicum rigidulum        | 0.5        |
| Coreopsis lanceolata       | 4          | Penstemon digitalis      | 1          |
| Coreopsis tinctoria        | 4          | Rudbeckia amplexicaulis  | 1          |
| Cosmos bipinnatus          | 1          | Rudbeckia hirta          | 3          |
| Delphinium ajacis          | 2          | Schizachyrium scoparium  | 5          |
| Desmodium canadense        | 1          | Senna hebecarpa          | 0.5        |
| Echinacea purpurea         | 5          | Tridens flavus           | 18         |
| Elymus virginicus          | 5          | Verbena hastata          | 1          |
| Eupatorium perfoliatum     | 0.5        |                          |            |
|                            |            | Total                    | 100        |

# Table 6C. Permanent Seed Mix

# Nesbit Site – Streamside & Wetland Mix

| Species*                 | Percentage | Species*           | Percentage |
|--------------------------|------------|--------------------|------------|
| Bidens aristosa          | 10         | Panicum rigidulum  | 30         |
| Carex albolutescens      | 6          | Panicum virgatum   | 5          |
| Elymus virginicus        | 15         | Rudbeckia hirta    | 4          |
| Helianthus angustifolius | 10         | Sorghastrum nutans | 15         |
| Juncus coriaceus         | 5          |                    |            |
|                          |            | Total              | 100        |

\* Both seed mixes were applied at 2 lbs per acre; however, in streamside areas, an additional 160 lbs of temporary soil health mix (turnip, clover, chicory) were applied along the easement boundary and in the upland areas.

# Table 7. Planted Vegetation Totals Nesbit Site

| Plot #                     | Planted Stems/Acre | Success Criteria Met? |
|----------------------------|--------------------|-----------------------|
| 1                          | 405                | Yes                   |
| 2                          | 445                | Yes                   |
| 3                          | 324                | Yes                   |
| 4                          | 648                | Yes                   |
| 5                          | 243                | No                    |
| 6                          | 729                | Yes                   |
| 7                          | 324                | Yes                   |
| 8                          | 324                | Yes                   |
| 9                          | 0                  | No                    |
| 10                         | 162                | No                    |
| 11                         | 243                | No                    |
| 12                         | 405                | Yes                   |
| 13                         | 202                | No                    |
| 14                         | 121                | No                    |
| 15                         | 607                | Yes                   |
| 16                         | 202                | No                    |
| T1                         | 486                | Yes                   |
| Т2                         | 202                | No                    |
| Average Planted Stems/Acre | 337                | Yes                   |

#### Table 8. Vegetation Plot Data Table from Vegetation Data Entry Tool

| Planted Acreage                  | 16         |
|----------------------------------|------------|
| Date of Initial Plant            | 2022-02-03 |
| Date(s) of Supplemental Plant(s) | NA         |
| Date(s) Mowing                   | NA         |
| Date of Current Survey           | 2023-08-30 |
| Plot size (ACRES)                | 0.0247     |

|                  | Scientific Name         | Common Namo       | Troo/Shrub  | Indicator | Veg P   | lot 1 F | Veg Pl  | ot 2 F | Veg P   | lot 3 F | Veg P   | lot 4 F | Veg F   | vlot 5 F | Veg P   | lot 6 F | Veg P   | lot 7 F | Veg P   | lot 8 F | Veg Pl  | lot 9 F  |
|------------------|-------------------------|-------------------|-------------|-----------|---------|---------|---------|--------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|----------|
|                  | Scientific Name         | Common Name       | Tree/Sillub | Status    | Planted | Total   | Planted | Total  | Planted | Total   | Planted | Total   | Planted | Total    | Planted | Total   | Planted | Total   | Planted | Total   | Planted | Total    |
|                  | Betula nigra            | river birch       | Tree        | FACW      |         |         |         |        |         |         |         |         | 3       | 3        |         |         |         |         |         |         |         | <u> </u> |
|                  | Carya cordiformis       | bitternut hickory | Tree        | FACU      |         |         |         |        |         |         |         |         |         |          |         |         |         |         |         |         |         | 1        |
|                  | Cornus amomum           | silky dogwood     | Shrub       | FACW      |         |         | 2       | 2      | 1       | 1       | 8       | 8       |         |          | 4       | 4       |         |         | 4       | 4       |         |          |
|                  | Diospyros virginiana    | common persimmon  | Tree        | FAC       |         |         |         |        |         |         | 1       | 1       |         |          | 2       | 2       |         |         |         |         |         |          |
|                  | Fraxinus pennsylvanica  | green ash         | Tree        | FACW      |         | 1       | 3       | 3      |         |         | 1       | 1       | 1       | 1        |         |         | 1       | 1       |         |         |         | 1        |
| Creation         | Liriodendron tulipifera | tuliptree         | Tree        | FACU      |         |         |         |        | 5       | 5       |         |         |         |          | 1       | 1       |         |         |         |         |         |          |
| Species          | Morus rubra             | red mulberry      | Tree        | FACU      | 1       | 1       |         |        |         |         |         |         |         |          |         |         |         |         |         |         |         |          |
| Approved         | Platanus occidentalis   | American sycamore | Tree        | FACW      | 3       | 3       | 5       | 5      |         |         |         |         |         |          | 3       | 3       | 7       | 7       |         |         |         |          |
| Mitigation Plan  | Quercus alba            | white oak         | Tree        | FACU      |         |         |         |        |         |         |         |         |         |          | 1       | 1       |         |         | 1       | 1       |         |          |
| Wittigation Flam | Quercus nigra           | water oak         | Tree        | FAC       |         |         | 1       | 1      |         |         | 2       | 2       | 1       | 1        |         |         |         |         |         |         |         |          |
| [                | Quercus phellos         | willow oak        | Tree        | FAC       | 3       | 3       |         |        |         |         | 2       | 2       |         |          | 7       | 7       |         |         | 1       | 1       |         |          |
| [                | Quercus rubra           | northern red oak  | Tree        | FACU      | 1       | 1       |         |        |         |         | 1       | 1       |         |          |         |         | 1       | 1       |         |         |         |          |
| [                | Quercus shumardii       | Shumard's oak     | Tree        | FAC       |         |         |         |        |         |         |         |         |         |          |         |         |         |         |         |         |         |          |
| [                | Quercus sp.             |                   |             |           |         |         |         |        | 3       | 3       |         |         | 1       | 1        |         |         | 1       | 1       | 1       | 1       |         |          |
| Γ                | Ulmus americana         | American elm      | Tree        | FACW      | 1       | 1       |         |        |         |         | 1       | 1       |         |          |         |         |         |         | 1       | 1       |         | 1        |
| Sum              | Performance Standard    |                   |             |           | 9       | 10      | 11      | 11     | 9       | 9       | 16      | 16      | 6       | 6        | 18      | 18      | 10      | 10      | 8       | 8       | 0       | 0        |
|                  |                         |                   |             |           |         |         |         |        |         |         |         |         |         |          |         |         |         |         |         |         |         |          |
|                  | Current Year Stem       | Count             |             |           |         | 10      |         | 11     |         | 9       |         | 16      |         | 6        |         | 18      |         | 10      |         | 8       |         | 0        |
| Mitigation Dlan  | Stems/Acre              |                   |             |           |         | 405     |         | 445    |         | 324     |         | 648     |         | 243      |         | 729     |         | 324     |         | 324     |         | 0        |
| Nilligation Plan | Species Coun            | t                 |             |           |         | 6       |         | 4      |         | 3       |         | 7       |         | 4        |         | 6       |         | 4       |         | 5       |         | 0        |
| Standard         | Dominant Species Com    | position (%)      |             |           |         | 30      |         | 45     |         | 56      |         | 50      |         | 50       |         | 39      |         | 70      |         | 50      |         | 0        |
| Standard         | Average Plot Heig       | ht (ft.)          |             |           |         | 2       |         | 3      |         | 2       |         | 2       |         | 2        |         | 2       |         | 2       |         | 1       |         |          |
| [                | % Invasives             |                   |             |           |         | 0       |         | 0      |         | 0       |         | 0       |         | 0        |         | 0       |         | 0       |         | 0       |         |          |
|                  |                         |                   |             |           |         |         |         |        |         |         |         |         |         |          |         |         |         |         |         |         |         |          |
|                  | Current Year Stem       | Count             |             |           |         | 10      |         | 11     |         | 9       |         | 16      |         | 6        |         | 18      |         | 10      |         | 8       |         | 0        |
| Post Mitigation  | Stems/Acre              |                   |             |           |         | 405     |         | 445    |         | 324     |         | 648     |         | 243      |         | 729     |         | 324     |         | 324     |         | 0        |
| Plan             | Species Coun            | t                 |             |           |         | 6       |         | 4      |         | 3       |         | 7       |         | 4        |         | 6       |         | 4       |         | 5       |         | 0        |
| Performance      | Dominant Species Com    | position (%)      |             |           |         | 30      |         | 45     |         | 56      |         | 50      |         | 50       |         | 39      |         | 70      |         | 50      |         | 0        |
| Standard         | Average Plot Heig       | ht (ft.)          |             |           |         | 2       |         | 3      |         | 2       |         | 2       |         | 2        |         | 2       |         | 2       |         | 1       |         |          |
| [[               | % Invasives             |                   |             |           |         | 0       |         | 0      |         | 0       |         | 0       |         | 0        |         | 0       |         | 0       |         | 0       |         |          |

1). Bolded species are proposed for the current monitoring year, italicized species are not approved, and a regular font indicates that the species has been approved.

2). The "Species Included in Approved Mitigation Plan" section contains only those species that were included in the original approved mitigation plan. The "Post Mitigation plan addendum for the current monitoring year (bolded), species that have been approved in prior monitoring years through a mitigation plan addendum for the current monitoring year (bolded), species that have been approved in prior monitoring years through a mitigation plan addendum (regular font), and species that are not approved (italicized).

3). The "Mitigation Plan Performance Standard" section is derived only from stems included in the original mitigation plan, whereas the "Post Mitigation Plan Performance Standard" includes data from mitigation plan approved, post mitigation plan approved, and proposed stems.

#### Table 8. Vegetation Plot Data Table from Vegetation Data Entry Tool (continued)

| Planted Acreage                  | 16         |
|----------------------------------|------------|
| Date of Initial Plant            | 2022-02-03 |
| Date(s) of Supplemental Plant(s) | NA         |
| Date(s) Mowing                   | NA         |
| Date of Current Survey           | 2023-08-30 |
| Plot size (ACRES)                | 0.0247     |

|                        | Scientific Name         | Common Namo       |             | Indicator | Veg Pl  | Veg Plot 10 F |         | Veg Plot 11 F |         | ot 12 F | Veg Pl  | lot 13 F | Veg Plot 14 F |       | Veg Plot 15 F |       | Veg Plot 16 F |       | Veg Plot 1 R | Veg Plot 2 R |
|------------------------|-------------------------|-------------------|-------------|-----------|---------|---------------|---------|---------------|---------|---------|---------|----------|---------------|-------|---------------|-------|---------------|-------|--------------|--------------|
|                        | Scientific Marie        | Common Name       | Tree/Sillub | Status    | Planted | Total         | Planted | Total         | Planted | Total   | Planted | Total    | Planted       | Total | Planted       | Total | Planted       | Total | Total        | Total        |
|                        | Betula nigra            | river birch       | Tree        | FACW      |         |               |         |               | 4       | 4       | 1       | 1        |               |       |               |       |               |       |              |              |
|                        | Carya cordiformis       | bitternut hickory | Tree        | FACU      |         |               |         |               |         |         | 1       | 1        |               |       |               |       |               |       |              |              |
|                        | Cornus amomum           | silky dogwood     | Shrub       | FACW      |         |               | 4       | 4             |         |         |         |          |               |       | 3             | 3     |               |       |              |              |
|                        | Diospyros virginiana    | common persimmon  | Tree        | FAC       |         |               | 1       | 1             |         |         | 1       | 1        |               |       |               |       | 1             | 1     |              | 2            |
|                        | Fraxinus pennsylvanica  | green ash         | Tree        | FACW      |         |               |         |               |         |         |         |          |               |       |               |       |               |       | 6            |              |
| Species                | Liriodendron tulipifera | tuliptree         | Tree        | FACU      |         |               | 1       | 1             |         |         |         |          |               |       |               |       |               |       |              |              |
| Species<br>Included in | Morus rubra             | red mulberry      | Tree        | FACU      |         |               |         |               |         |         |         |          |               |       |               |       |               |       |              |              |
| Approved               | Platanus occidentalis   | American sycamore | Tree        | FACW      |         |               |         |               | 1       | 1       |         |          |               |       | 6             | 6     | 2             | 2     | 7            | 4            |
| Mitigation Plan        | Quercus alba            | white oak         | Tree        | FACU      | 2       | 2             | 1       | 1             |         |         |         |          |               |       | 2             | 2     | 1             | 1     |              |              |
| Mitigation Flam        | Quercus nigra           | water oak         | Tree        | FAC       |         |               |         |               | 3       | 3       |         |          | 1             | 1     | 2             | 2     |               |       |              |              |
|                        | Quercus phellos         | willow oak        | Tree        | FAC       | 3       | 3             |         |               |         |         |         |          |               |       |               |       | 1             | 1     |              |              |
|                        | Quercus rubra           | northern red oak  | Tree        | FACU      |         |               |         |               |         |         |         |          |               |       |               |       |               |       |              |              |
|                        | Quercus shumardii       | Shumard's oak     | Tree        | FAC       |         |               |         |               | 1       | 1       |         |          | 1             | 1     |               |       |               |       |              |              |
|                        | Quercus sp.             |                   |             |           |         |               |         |               | 1       | 1       | 2       | 2        | 1             | 1     | 2             | 2     |               |       |              |              |
|                        | Ulmus americana         | American elm      | Tree        | FACW      |         |               |         |               |         |         |         |          |               |       |               |       |               |       |              |              |
| Sum                    | Performance Standard    |                   |             |           | 5       | 5             | 7       | 7             | 10      | 10      | 5       | 5        | 3             | 3     | 15            | 15    | 5             | 5     | 13           | 6            |
|                        |                         |                   |             |           |         |               |         |               |         |         |         |          |               |       |               |       |               |       |              |              |
|                        | Current Year Stem       | Count             |             |           |         | 5             |         | 7             |         | 10      |         | 5        |               | 3     |               | 15    |               | 5     | 13           | 6            |
| Mitigation Plan        | Stems/Acre              |                   |             |           |         | 162           |         | 243           |         | 405     |         | 202      |               | 121   |               | 607   |               | 202   | 486          | 202          |
| Performance            | Species Coun            | ıt                |             |           |         | 2             |         | 4             |         | 5       |         | 4        |               | 3     |               | 5     |               | 4     | 2            | 2            |
| Standard               | Dominant Species Com    | position (%)      |             |           |         | 60            |         | 57            |         | 40      |         | 40       |               | 33    |               | 40    |               | 40    | 54           | 67           |
| Standard               | Average Plot Heig       | ht (ft.)          |             |           |         | 1             |         | 1             |         | 2       |         | 1        |               | 1     |               | 2     |               | 2     | 2            | 2            |
|                        | % Invasives             |                   |             |           |         | 0             |         | 0             |         | 0       |         | 0        |               | 0     |               | 0     |               | 0     | 0            | 0            |
|                        |                         |                   |             |           |         |               |         |               |         |         |         |          |               |       |               |       |               |       |              |              |
|                        | Current Year Stem       | Count             |             |           |         | 5             |         | 7             |         | 10      |         | 5        |               | 3     |               | 15    |               | 5     | 13           | 6            |
| Post Mitigation        | Stems/Acre              |                   |             |           |         | 162           |         | 243           |         | 405     |         | 202      |               | 121   |               | 607   |               | 202   | 486          | 202          |
| Plan                   | Species Coun            | t                 |             |           |         | 2             |         | 4             |         | 5       |         | 4        |               | 3     |               | 5     |               | 4     | 2            | 2            |
| Performance            | Dominant Species Com    | position (%)      |             |           |         | 60            |         | 57            |         | 40      |         | 40       |               | 33    |               | 40    |               | 40    | 54           | 67           |
| Standard               | Average Plot Heig       | ht (ft.)          |             |           |         | 1             |         | 1             |         | 2       |         | 1        |               | 1     |               | 2     |               | 2     | 2            | 2            |
|                        | % Invasives             |                   |             |           |         | 0             |         | 0             |         | 0       |         | 0        |               | 0     |               | 0     |               | 0     | 0            | 0            |

1). Bolded species are proposed for the current monitoring year, italicized species are not approved, and a regular font indicates that the species has been approved.

2). The "Species Included in Approved Mitigation Plan" section contains only those species that are being proposed through a mitigation plan addendum for the current monitoring year (bolded), species that have been approved in prior monitoring years through a mitigation plan addendum (regular font), and species that are not approved (italicized).

3). The "Mitigation Plan Performance Standard" section is derived only from stems included in the original mitigation plan, whereas the "Post Mitigation Plan Performance Standard" includes data from mitigation plan approved, post mitigation plan approved, and proposed stems.

# Appendix C: Stream Geomorphology Data

Cross-Sections with Annual Overlays Table 9A-D. Baseline Stream Data Summary Tables Table 10A-C. Cross-Section Morphology Monitoring Summary

| Site        | Nesbit                               |
|-------------|--------------------------------------|
| Watershed:  | Catawba River Basin, 03050103        |
| XS ID       | Glen Br (Downstream), XS - 1, Riffle |
| Feature     | Riffle                               |
| Date:       | 4/3/2023                             |
| Field Crew: | Adams                                |

Elevation

614.9

614.8

614.9

614.8

614.8

614.1 613.5

613.2

613.1

613.1

612.9

612.9

612.9

612.9

613.1

613.6

614.1

614.7

614.8

614.9

614.87

614.9

Station

-0.2

3.5

7.3

10.4

11.7

13.3

15.1 16.8

17.9

19.5

20.6

22.0

23.4

23.5

24.4

25.9

27.9

30.8

34.6

38.2

41.9

44.0

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 614.74 |
| Bank Hieght Ratio:         | 1.00   |
| Thalweg Elevation:         | 612.88 |
| LTOB Elevation:            | 614.74 |
| LTOB Max Depth:            | 1.86   |
| LTOB Cross Sectional Area: | 22.8   |



Stream Type E/C 5



| Site        | Nesbit                             |
|-------------|------------------------------------|
| Watershed:  | Catawba River Basin, 03050103      |
| XS ID       | Glen Br (Downstream), XS - 2, Pool |
| Feature     | Pool                               |
| Date:       | 4/3/2023                           |
| Field Crew: | Adams                              |

| 615.09 |
|--------|
| 1.02   |
| 612.28 |
| 615.14 |
| 2.87   |
| 34.3   |
|        |







| Station | Elevation |
|---------|-----------|
| -0.3    | 615.5     |
| 3.7     | 615.4     |
| 8.0     | 615.4     |
| 12.4    | 615.2     |
| 16.2    | 614.5     |
| 18.0    | 614.1     |
| 18.6    | 613.8     |
| 18.9    | 613.4     |
| 20.2    | 612.9     |
| 21.7    | 612.7     |
| 23.0    | 612.8     |
| 24.5    | 612.6     |
| 25.7    | 612.3     |
| 26.4    | 612.3     |
| 27.8    | 612.5     |
| 29.0    | 612.6     |
| 30.3    | 613.0     |
| 31.5    | 614.3     |
| 33.5    | 615.1     |
| 35.8    | 615.4     |
| 38.2    | 615.52    |
| 40.6    | 615.3     |
| 43.5    | 615.5     |
| 46.4    | 615.4     |
| 49.5    | 615.7     |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |

| Site        | Nesbit                        |
|-------------|-------------------------------|
| Watershed:  | Catawba River Basin, 03050103 |
| XS ID       | UT 2, XS - 3, Riffle          |
| Feature     | Riffle                        |
| Date:       | 4/3/2023                      |
| Field Crew: | Adams                         |

| Station | Elevation |  |
|---------|-----------|--|
| -0.4    | 618.3     |  |
| 2.5     | 618.2     |  |
| 5.5     | 618.3     |  |
| 6.9     | 618.3     |  |
| 7.7     | 618.2     |  |
| 8.5     | 617.8     |  |
| 9.1     | 617.8     |  |
| 9.8     | 617.8     |  |
| 10.3    | 617.8     |  |
| 10.9    | 617.9     |  |
| 12.0    | 617.9     |  |
| 12.9    | 618.3     |  |
| 14.1    | 618.4     |  |
| 15.3    | 618.4     |  |
| 16.8    | 618.4     |  |
| 18.2    | 618.4     |  |
| 19.2    | 618.4     |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 618.36 |
| Bank Hieght Ratio:         | 0.89   |
| Thalweg Elevation:         | 617.77 |
| LTOB Elevation:            | 618.30 |
| LTOB Max Depth:            | 0.52   |
| LTOB Cross Sectional Area: | 2.0    |



Stream Type E/C 5



| Site        | Nesbit                        |
|-------------|-------------------------------|
| Watershed:  | Catawba River Basin, 03050103 |
| XS ID       | UT 2, XS - 4, Pool            |
| Feature     | Pool                          |
| Date:       | 4/3/2023                      |
| Field Crew: | Adams                         |

| Station | Elevation |  |
|---------|-----------|--|
| 0.0     | 618.2     |  |
| 2.1     | 618.4     |  |
| 4.1     | 618.5     |  |
| 4.9     | 618.5     |  |
| 6.0     | 618.3     |  |
| 7.2     | 618.0     |  |
| 8.1     | 617.7     |  |
| 8.9     | 617.6     |  |
| 10.1    | 617.4     |  |
| 10.7    | 617.5     |  |
| 11.5    | 617.5     |  |
| 12.4    | 618.0     |  |
| 13.2    | 618.6     |  |
| 14.9    | 618.7     |  |
| 16.2    | 618.7     |  |
| 17.7    | 618.5     |  |
| 17.9    | 618.5     |  |
| 19.5    | 618.4     |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 618.51 |
| Bank Hieght Ratio:         | 1.02   |
| Thalweg Elevation:         | 617.43 |
| LTOB Elevation:            | 618.53 |
| LTOB Max Depth:            | 1.10   |
| LTOB Cross Sectional Area: | 5.4    |







| Site        | Nesbit                             |
|-------------|------------------------------------|
| Watershed:  | Catawba River Basin, 03050103      |
| XSID        | Glen Br (Downstream), XS - 5, Pool |
| Feature     | Pool                               |
| Date:       | 4/3/2023                           |
| Field Crew: | Adams                              |

| Station | Elevation |  |
|---------|-----------|--|
| 0.4     | 620.5     |  |
| 3.7     | 620.4     |  |
| 6.2     | 620.3     |  |
| 8.7     | 620.2     |  |
| 11.1    | 620.1     |  |
| 12.7    | 619.9     |  |
| 14.2    | 619.6     |  |
| 15.6    | 619.1     |  |
| 16.8    | 618.9     |  |
| 17.6    | 618.6     |  |
| 18.3    | 618.3     |  |
| 19.4    | 617.6     |  |
| 20.7    | 617.2     |  |
| 21.7    | 617.0     |  |
| 23.3    | 616.8     |  |
| 24.1    | 617.1     |  |
| 25.1    | 617.0     |  |
| 26.2    | 617.2     |  |
| 27.3    | 617.1     |  |
| 28.6    | 617.2     |  |
| 29.6    | 617.5     |  |
| 30.7    | 618.0     |  |
| 31.9    | 618.8     |  |
| 33.8    | 619.5     |  |
| 34.9    | 619.9     |  |
| 36.9    | 620.0     |  |
| 38.7    | 619.8     |  |
| 40.8    | 619.9     |  |
| 42.8    | 620.0     |  |
| 45.5    | 620.0     |  |
| 47.7    | 620.1     |  |
| 49.6    | 620.1     |  |
| 51.3    | 620.1     |  |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 619.99 |
| Bank Hieght Ratio:         | 0.99   |
| Thalweg Elevation:         | 616.83 |
| LTOB Elevation:            | 619.94 |
| LTOB Max Depth:            | 3.11   |
| LTOB Cross Sectional Area: | 41.3   |



E/C 5



| Site        | Neshit                               |
|-------------|--------------------------------------|
| Watershed:  | Catawba River Basin, 03050103        |
| XSID        | Glen Br (Downstream), XS - 6, Riffle |
| Feature     | Riffle                               |
| Date:       | 4/3/2023                             |
| Field Crew: | Adams                                |

| Station | Elevation |  |
|---------|-----------|--|
| -0.1    | 620.7     |  |
| 2.8     | 620.5     |  |
| 5.0     | 620.4     |  |
| 7.3     | 620.3     |  |
| 10.2    | 620.2     |  |
| 12.6    | 620.3     |  |
| 14.2    | 620.2     |  |
| 15.3    | 619.9     |  |
| 16.6    | 619.4     |  |
| 17.7    | 619.1     |  |
| 18.8    | 618.9     |  |
| 20.1    | 618.6     |  |
| 20.7    | 618.5     |  |
| 21.7    | 618.4     |  |
| 23.0    | 618.6     |  |
| 23.8    | 618.6     |  |
| 25.2    | 618.6     |  |
| 26.2    | 618.7     |  |
| 27.2    | 618.7     |  |
| 28.1    | 618.7     |  |
| 29.2    | 618.85    |  |
| 30.8    | 619.4     |  |
| 32.8    | 620.0     |  |
| 35.2    | 620.0     |  |
| 37.3    | 620.1     |  |
| 39.5    | 620.2     |  |
| 41.5    | 620.2     |  |
| 43.1    | 620.4     |  |
| 44.7    | 620.4     |  |
| 45.9    | 620.3     |  |
|         |           |  |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 619.99 |
| Bank Hieght Ratio:         | 0.99   |
| Thalweg Elevation:         | 618.41 |
| LTOB Elevation:            | 619.98 |
| LTOB Max Depth:            | 1.57   |
| LTOB Cross Sectional Area: | 18.3   |







| Site        | Nesbit                        |
|-------------|-------------------------------|
| Watershed:  | Catawba River Basin, 03050103 |
| XSID        | UT 1, XS - 7, Pool            |
| Feature     | Pool                          |
| Date:       | 4/3/2023                      |
| Field Crew: | Adams                         |

| Station | Elevation |
|---------|-----------|
| 0.3     | 629.2     |
| 2.5     | 629.2     |
| 4.4     | 629.3     |
| 6.3     | 629.3     |
| 8.6     | 629.0     |
| 10.3    | 628.7     |
| 11.5    | 628.5     |
| 12.4    | 628.5     |
| 13.2    | 628.1     |
| 13.8    | 627.9     |
| 15.0    | 627.8     |
| 15.6    | 628.0     |
| 16.6    | 628.0     |
| 17.7    | 628.1     |
| 18.8    | 628.4     |
| 20.1    | 629.0     |
| 21.0    | 629.4     |
| 22.6    | 629.5     |
| 24.6    | 629.4     |
| 26.9    | 629.6     |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 629.32 |
| Bank Hieght Ratio:         | 1.01   |
| Thalweg Elevation:         | 627.84 |
| LTOB Elevation:            | 629.34 |
| LTOB Max Depth:            | 1.50   |
| LTOB Cross Sectional Area: | 11.9   |



E/C 5



| Site        | Nesbit                        |
|-------------|-------------------------------|
| Watershed:  | Catawba River Basin, 03050103 |
| XSID        | UT 1, XS - 8, Riffle          |
| Feature     | Riffle                        |
| Date:       | 4/3/2023                      |
| Field Crew: | Adams                         |

| Station | Elevation |
|---------|-----------|
| -0.1    | 629.3     |
| 2.8     | 629.4     |
| 5.5     | 629.5     |
| 7.1     | 629.5     |
| 7.5     | 629.4     |
| 8.2     | 629.2     |
| 8.8     | 629.0     |
| 9.5     | 628.7     |
| 9.9     | 628.4     |
| 11.1    | 628.2     |
| 11.5    | 628.5     |
| 11.7    | 628.5     |
| 12.1    | 628.4     |
| 12.7    | 628.4     |
| 13.2    | 628.4     |
| 13.7    | 628.4     |
| 14.2    | 628.5     |
| 15.1    | 628.6     |
| 16.1    | 628.7     |
| 17.1    | 628.9     |
| 18.3    | 629.20    |
| 19.5    | 629.5     |
| 20.6    | 629.4     |
| 22.5    | 629.4     |
| 24.1    | 629.5     |
| 27.1    | 629.9     |
|         |           |
|         |           |
|         |           |
|         |           |
|         |           |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 629.37 |
| Bank Hieght Ratio:         | 1.05   |
| Thalweg Elevation:         | 628.25 |
| LTOB Elevation:            | 629.43 |
| LTOB Max Depth:            | 1.19   |
| LTOB Cross Sectional Area: | 8.4    |



Stream Type E/C 5

Nesbit, UT 1, XS - 8, Riffle



| Site        | Nesbit                           |
|-------------|----------------------------------|
| Watershed:  | Catawba River Basin, 03050103    |
| XSID        | Glen Br (Upstream), XS - 9, Pool |
| Feature     | Pool                             |
| Date:       | 4/3/2023                         |
| Field Crew: | Adams                            |

| Station | Elevation |
|---------|-----------|
| 0.0     | 625.9     |
| 1.9     | 626.0     |
| 4.0     | 626.0     |
| 6.0     | 626.0     |
| 7.8     | 626.0     |
| 9.4     | 626.1     |
| 10.1    | 626.0     |
| 11.7    | 625.6     |
| 13.0    | 625.3     |
| 14.3    | 625.1     |
| 15.2    | 624.8     |
| 15.8    | 624.4     |
| 16.2    | 624.2     |
| 16.4    | 624.0     |
| 17.3    | 623.7     |
| 18.4    | 623.6     |
| 19.1    | 623.7     |
| 20.3    | 623.7     |
| 21.3    | 623.7     |
| 22.4    | 623.7     |
| 23.2    | 623.86    |
| 24.8    | 624.7     |
| 25.9    | 625.5     |
| 27.0    | 626.0     |
| 28.6    | 626.0     |
| 29.5    | 626.1     |
| 31.4    | 626.0     |
| 34.0    | 626.2     |
| 35.7    | 626.2     |
| 37.2    | 626.6     |
|         |           |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 626.02 |
| Bank Hieght Ratio:         | 0.97   |
| Thalweg Elevation:         | 623.60 |
| LTOB Elevation:            | 625.96 |
| LTOB Max Depth:            | 2.36   |
| LTOB Cross Sectional Area: | 23.9   |



E/C 5



| Site        | Nesbit                              |
|-------------|-------------------------------------|
| Watershed:  | Catawba River Basin, 03050103       |
| XSID        | Glen Br (Upstream), XS - 10, Riffle |
| Feature     | Riffle                              |
| Date:       | 4/3/2023                            |
| Field Crew: | Adams                               |

| Station | Elevation |
|---------|-----------|
| 0.0     | 626.3     |
| 1.8     | 626.2     |
| 3.8     | 626.0     |
| 5.4     | 626.0     |
| 7.1     | 626.1     |
| 7.5     | 626.2     |
| 9.3     | 625.4     |
| 10.6    | 625.1     |
| 11.2    | 624.8     |
| 12.4    | 624.9     |
| 13.5    | 624.6     |
| 14.7    | 624.5     |
| 15.8    | 624.7     |
| 16.7    | 624.8     |
| 18.0    | 624.8     |
| 18.8    | 624.9     |
| 19.5    | 625.2     |
| 20.4    | 625.1     |
| 21.8    | 625.7     |
| 23.0    | 626.4     |
| 24.5    | 626.50    |
| 26.4    | 626.3     |
| 28.6    | 626.3     |
| 30.4    | 626.6     |
| 32.2    | 626.8     |
| 33.9    | 626.7     |
| 34.5    | 626.7     |
|         |           |
|         |           |
|         |           |
|         |           |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 626.06 |
| Bank Hieght Ratio:         | 1.09   |
| Thalweg Elevation:         | 624.55 |
| LTOB Elevation:            | 626.19 |
| LTOB Max Depth:            | 1.65   |
| LTOB Cross Sectional Area: | 16.7   |



E/C 5



| Site        | Nesbit                              |
|-------------|-------------------------------------|
| Watershed:  | Catawba River Basin, 03050103       |
| XSID        | Glen Br (Upstream), XS - 11, Riffle |
| Feature     | Riffle                              |
| Date:       | 4/3/2023                            |
| Field Crew: | Adams                               |

| Station | Elevation |  |
|---------|-----------|--|
| -0.1    | 632.7     |  |
| 2.6     | 632.8     |  |
| 4.6     | 632.8     |  |
| 6.5     | 632.7     |  |
| 8.9     | 632.7     |  |
| 10.7    | 632.8     |  |
| 10.8    | 632.8     |  |
| 12.7    | 632.4     |  |
| 14.3    | 631.8     |  |
| 15.4    | 631.7     |  |
| 16.6    | 631.3     |  |
| 18.0    | 631.5     |  |
| 19.2    | 631.2     |  |
| 20.5    | 631.2     |  |
| 21.5    | 631.4     |  |
| 22.9    | 631.3     |  |
| 24.1    | 631.6     |  |
| 25.9    | 632.0     |  |
| 27.0    | 632.4     |  |
| 29.1    | 632.5     |  |
| 29.2    | 632.52    |  |
| 31.5    | 632.4     |  |
| 33.7    | 632.6     |  |
| 36.4    | 632.6     |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |
|         |           |  |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 632.50 |
| Bank Hieght Ratio:         | 1.02   |
| Thalweg Elevation:         | 631.22 |
| LTOB Elevation:            | 632.52 |
| LTOB Max Depth:            | 1.30   |
| LTOB Cross Sectional Area: | 13.5   |



Stream Type E/C 5





| Site        | Nesbit                            |
|-------------|-----------------------------------|
| Watershed:  | Catawba River Basin, 03050103     |
| XS ID       | Glen Br (Upstream), XS - 12, Pool |
| Feature     | Pool                              |
| Date:       | 4/3/2023                          |
| Field Crew: | Adams                             |

| SUMMARY DATA               |        |
|----------------------------|--------|
| Bankfull Elevation:        | 632.68 |
| Bank Hieght Ratio:         | 1.03   |
| Thalweg Elevation:         | 630.26 |
| LTOB Elevation:            | 632.74 |
| LTOB Max Depth:            | 2.48   |
| LTOB Cross Sectional Area: | 27.3   |







| Station | Elevation |
|---------|-----------|
| 0.0     | 633.1     |
| 2.5     | 632.9     |
| 4.3     | 632.6     |
| 6.4     | 632.8     |
| 8.4     | 632.7     |
| 11.1    | 632.4     |
| 12.3    | 632.1     |
| 12.9    | 632.0     |
| 13.5    | 631.4     |
| 14.6    | 631.0     |
| 15.8    | 630.7     |
| 17.1    | 630.5     |
| 18.2    | 630.3     |
| 19.4    | 630.5     |
| 20.8    | 630.3     |
| 21.7    | 630.6     |
| 22.6    | 630.8     |
| 23.7    | 630.9     |
| 24.6    | 631.1     |
| 25.7    | 631.9     |
| 27.3    | 632.78    |
| 29.2    | 633.0     |
| 31.4    | 632.9     |
| 33.8    | 633.1     |
| 35.7    | 633.1     |
| 37.8    | 633.0     |
|         |           |
|         |           |
|         |           |
|         | ļ         |
|         |           |

| Table 9/<br>Nes                                  | Table 9A. Baseline Stream Data Summary<br>Nesbit - Glen Branch (Upstream) |                    |          |            |       |      |      |                              |        |   |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------|----------|------------|-------|------|------|------------------------------|--------|---|--|--|--|--|
| Parameter                                        | Pre-                                                                      | Existing (         | Conditio | n (applica | aple) | De   | sign | Monitoring Baseline<br>(MY0) |        |   |  |  |  |  |
| Riffle Only                                      | Min                                                                       | Min Mean Med Max n |          |            |       |      |      | Min                          | Max    | n |  |  |  |  |
| Bankfull Width (ft)                              | 11.0                                                                      |                    | 15.1     | 26         | 7     | 14.2 | 16.3 | 15.2                         | 15.4   | 2 |  |  |  |  |
| Floodprone Width (ft)                            | 16                                                                        |                    | 50       | 100        | 7     | 50   | 100  | 75                           | 75     | 2 |  |  |  |  |
| Bankfull Mean Depth (ft)                         | 0.6                                                                       |                    | 1.1      | 1.5        | 7     | 1    | 1.2  | 0.9                          | 1.0    | 2 |  |  |  |  |
| Bankfull Max Depth (ft)                          | 1.3                                                                       |                    | 2        | 2.2        | 7     | 1.3  | 1.8  | 1.3                          | 1.4    | 2 |  |  |  |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | 16.7                                                                      |                    | 16.7     | 16.7       | 7     | 16.7 | 16.7 | 13.1                         | 14.7   | 2 |  |  |  |  |
| Width/Depth Ratio                                | 7.3                                                                       |                    | 13.7     | 43.3       | 7     | 12   | 16   | 16.2                         | 17.8   | 2 |  |  |  |  |
| Entrenchment Ratio                               | 1.4                                                                       |                    | 2.8      | 6.5        | 7     | 3.5  | 6.1  | 4.9                          | 4.9    | 2 |  |  |  |  |
| Bank Height Ratio                                | 1                                                                         |                    | 1.8      | 2.2        | 7     | 1    | 1.3  | 1                            | 1      | 2 |  |  |  |  |
| Max part size (mm) mobilized at bankfull         |                                                                           |                    |          |            |       |      |      |                              |        |   |  |  |  |  |
| Rosgen Classification                            |                                                                           |                    | Cg 4     |            |       | Ce   | 3/4  |                              | Ce 3/4 |   |  |  |  |  |
| Bankfull Discharge (cfs)                         |                                                                           |                    | 68.7     |            |       | 68   | 3.7  |                              | 68.7   |   |  |  |  |  |
| Sinuosity (ft)                                   | 1.03                                                                      |                    |          |            |       | 1.   | 15   | 1.15                         |        |   |  |  |  |  |
| Water Surface Slope (Channel) (ft/ft)            | 075                                                                       |                    |          |            |       | 0.0  | 067  | 0.006                        |        |   |  |  |  |  |
| Other                                            |                                                                           |                    |          |            |       |      |      |                              |        |   |  |  |  |  |

| Table 9B. Baseline Stream Data SummaryNesbit - Glen Branch (Downstream) |             |            |          |            |       |      |             |                              |        |   |  |  |  |
|-------------------------------------------------------------------------|-------------|------------|----------|------------|-------|------|-------------|------------------------------|--------|---|--|--|--|
| Parameter                                                               | Pre-l       | Existing ( | Conditio | n (applica | aple) | Des  | sign        | Monitoring Baseline<br>(MY0) |        |   |  |  |  |
| Riffle Only                                                             | Min         | Mean       | Med      | Max        | n     | Min  | Max         | Min                          | Max    | n |  |  |  |
| Bankfull Width (ft)                                                     | 11.2        |            | 15.7     | 18.2       | 7     | 16.7 | 19.3        | 17.4                         | 18.0   | 2 |  |  |  |
| Floodprone Width (ft)                                                   | 25          |            | 100      | 100        | 7     | 50   | 150         | 100                          | 100    | 2 |  |  |  |
| Bankfull Mean Depth (ft)                                                | 1.3         |            | 1.5      | 2.1        | 7     | 1.4  | 1.4         | 1.1                          | 1.3    | 2 |  |  |  |
| Bankfull Max Depth (ft)                                                 | 1.6         |            | 2.4      | 2.8        | 7     | 1.5  | 2.1         | 1.5                          | 1.9    | 2 |  |  |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> )                        | 23.2        |            | 23.2     | 23.2       | 7     | 23.2 | 23.2        | 18.4                         | 22.8   | 2 |  |  |  |
| Width/Depth Ratio                                                       | 5.3         |            | 10.5     | 14         | 7     | 12   | 16          | 14.1                         | 16.4   | 2 |  |  |  |
| Entrenchment Ratio                                                      | 1.4         |            | 5.9      | 8.9        | 7     | 3    | 7.8         | 5.6                          | 5.8    | 2 |  |  |  |
| Bank Height Ratio                                                       | 1.3         |            | 1.7      | 2.1        | 7     | 1    | 1.3         | 1                            | 1      | 2 |  |  |  |
| Max part size (mm) mobilized at bankfull                                |             |            |          |            |       |      |             |                              |        |   |  |  |  |
| Rosgen Classification                                                   |             |            | Eg 4     |            |       | Ce   | 3/4         |                              | Ce 3/4 |   |  |  |  |
| Bankfull Discharge (cfs)                                                |             |            | 97.3     |            |       | 97   | <b>'</b> .3 |                              | 97.3   |   |  |  |  |
| Sinuosity (ft)                                                          | 1.03        |            |          |            |       | 1.   | 15          | 1.15                         |        |   |  |  |  |
| Water Surface Slope (Channel) (ft/ft)                                   | /ft) 0.0047 |            |          |            | 0.0   | 042  | 0.0046      |                              |        |   |  |  |  |
| Other                                                                   |             |            |          |            |       |      |             |                              |        |   |  |  |  |

| Table 90                                         | C. Base  | line Str<br>Nesbit - | eam Da<br>· UT 1 | ata Sum   | mary  |     |      |                              |        |   |  |
|--------------------------------------------------|----------|----------------------|------------------|-----------|-------|-----|------|------------------------------|--------|---|--|
| Parameter                                        | Pre-     | Existing (           | Conditio         | n (applic | aple) | De  | sign | Monitoring Baseline<br>(MY0) |        |   |  |
| Riffle Only                                      | Min      | Mean                 | Med              | Max       | n     | Min | Max  | Min                          | Max    | n |  |
| Bankfull Width (ft)                              | 7.1      |                      | 8.7              | 9.5       | 5     | 10  | 11.6 | 11.0                         | 11.0   | 1 |  |
| Floodprone Width (ft)                            | 20       |                      | 29               | 50        | 5     | 50  | 100  | 75.0                         | 75.0   | 1 |  |
| Bankfull Mean Depth (ft)                         | 0.9      |                      | 1                | 1.2       | 5     | 0.7 | 0.8  | 0.7                          | 0.7    | 1 |  |
| Bankfull Max Depth (ft)                          | 0.9      |                      | 1                | 1.3       | 5     | 0.9 | 1.3  | 1.0                          | 1.0    | 1 |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | 8.4      |                      | 8.4              | 8.4       | 5     | 8.4 | 8.4  | 7.6                          | 7.6    | 1 |  |
| Width/Depth Ratio                                | 5.9      |                      | 8.7              | 10.6      | 5     | 12  | 16   | 15.9                         | 15.9   | 1 |  |
| Entrenchment Ratio                               | 2.5      |                      | 3.2              | 7         | 5     | 5   | 8.6  | 6.8                          | 6.8    | 1 |  |
| Bank Height Ratio                                | 1.4      |                      | 1.7              | 1.8       | 5     | 1   | 1.3  | 1.0                          | 1.0    | 1 |  |
| Max part size (mm) mobilized at bankfull         |          |                      |                  |           |       |     |      |                              |        |   |  |
| Rosgen Classification                            |          |                      | Eg 4             |           |       | Ce  | 3/4  |                              | Ce 3/4 |   |  |
| Bankfull Discharge (cfs)                         |          |                      | 32.9             |           |       | 32  | 2.9  |                              | 32.9   |   |  |
| Sinuosity (ft)                                   | ) 1.06   |                      |                  |           |       | 1.  | 15   | 1.15                         |        |   |  |
| Water Surface Slope (Channel) (ft/ft)            | ) 0.0081 |                      |                  |           |       | 0.0 | 075  | 0.0069                       |        |   |  |
| Other                                            |          |                      |                  |           |       |     |      |                              |        |   |  |

| Table 9D. Baseline Stream Data Summary<br>Nesbit - UT 2 |                  |            |          |            |       |     |        |                              |        |   |  |  |  |
|---------------------------------------------------------|------------------|------------|----------|------------|-------|-----|--------|------------------------------|--------|---|--|--|--|
| Parameter                                               | Pre-             | Existing ( | Conditio | n (applica | aple) | Des | sign   | Monitoring Baseline<br>(MY0) |        |   |  |  |  |
| Riffle Only                                             | Min              | Mean       | Med      | Max        | n     | Min | Max    | Min                          | Max    | n |  |  |  |
| Bankfull Width (ft)                                     | 3.4              |            | 4.7      | 7.9        | 3     | 6.2 | 7.2    | 5.6                          | 5.6    | 1 |  |  |  |
| Floodprone Width (ft)                                   | 7                |            | 30       | 50         | 3     | 25  | 75     | 100.0                        | 100.0  | 1 |  |  |  |
| Bankfull Mean Depth (ft)                                | 0.4              |            | 0.7      | 0.9        | 3     | 0.4 | 0.5    | 0.4                          | 0.4    | 1 |  |  |  |
| Bankfull Max Depth (ft)                                 | 0.6              |            | 1.1      | 1.5        | 3     | 0.6 | 0.8    | 0.6                          | 0.6    | 1 |  |  |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> )        | 3.2              |            | 3.2      | 3.2        | 3     | 3.2 | 3.2    | 2.4                          | 2.4    | 1 |  |  |  |
| Width/Depth Ratio                                       | 3.8              |            | 6.7      | 19.8       | 3     | 12  | 16     | 13.1                         | 13.1   | 1 |  |  |  |
| Entrenchment Ratio                                      | 1.5              |            | 3.8      | 14.7       | 3     | 4   | 10.5   | 17.8                         | 17.8   | 1 |  |  |  |
| Bank Height Ratio                                       | 1.6              |            | 2.5      | 8.7        | 3     | 1   | 1.3    | 1.0                          | 1.0    | 1 |  |  |  |
| Max part size (mm) mobilized at bankfull                |                  |            |          |            |       |     |        |                              |        |   |  |  |  |
| Rosgen Classification                                   |                  |            | Eg 6     |            |       | Ce  | 3/4    |                              | Ce 3/4 |   |  |  |  |
| Bankfull Discharge (cfs)                                |                  |            | 11.8     |            |       | 11  | 8      |                              | 11.8   |   |  |  |  |
| Sinuosity (ft)                                          | 1.03             |            |          |            | 1.    | 15  | 1.15   |                              |        |   |  |  |  |
| Water Surface Slope (Channel) (ft/ft)                   | ) (ft/ft) 0.0143 |            |          |            | 0.0   | 128 | 0.0089 |                              |        |   |  |  |  |
| Other                                                   |                  |            |          |            |       |     |        |                              |        |   |  |  |  |

|                                                                  |                                    |        |        |     |     |     |                                  | Tal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ble 10    | A. Mo    | nitori    | ing Da    | ita - Cro     | oss Sec                          | tion N    | lorpho   | logy N   | Nonit   | oring                       | ; Sumn    | nary         |           |            |         |
|------------------------------------------------------------------|------------------------------------|--------|--------|-----|-----|-----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|-----------|---------------|----------------------------------|-----------|----------|----------|---------|-----------------------------|-----------|--------------|-----------|------------|---------|
|                                                                  |                                    |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          | (Nest     | oit/ DI   | <b>MS:100</b> | )121)                            | Glen E    | Branch   | Upstr    | eam     |                             |           |              |           |            |         |
|                                                                  | Glen Br (Upstream) - XS 1 (Riffle) |        |        |     |     |     | Glen Br (Upstream) - XS 2 (Pool) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               | Glen Br (Upstream) - XS 5 (Pool) |           |          |          |         |                             |           | Glen Br (Up: |           |            |         |
|                                                                  | MY0                                | MY1    | MY2    | MY3 | MY5 | MY7 | MY+                              | MY0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MY1       | MY2      | MY3       | MY5       | MY7           | MY+                              | MY0       | MY1      | MY2      | MY3     | MY5                         | MY7       | MY+          | MY0       | MY1        | MY      |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area | 614.79                             | 614.74 | 614.74 |     |     |     |                                  | 615.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 615.11    | 615.09   |           |           |               |                                  | 619.98    | 619.95   | 619.99   |         |                             |           |              | 619.97    | 619.98     | 619.9   |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area         | 1.00                               | 1.02   | 1.00   |     |     |     |                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.01      | 1.02     |           |           |               |                                  | 1.00      | 1.01     | 0.99     |         |                             |           |              | 1.00      | 1.05       | 0.99    |
| Thalweg Elevation                                                | 612.90                             | 612.88 | 612.88 |     |     |     |                                  | 612.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 612.32    | 612.28   |           |           |               |                                  | 616.89    | 616.90   | 616.83   |         |                             |           |              | 618.49    | 618.43     | 618.4   |
| LTOB <sup>2</sup> Elevation                                      | 614.79                             | 614.77 | 614.74 |     |     |     |                                  | 615.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 615.14    | 615.14   |           | `         |               |                                  | 619.98    | 619.99   | 619.94   |         |                             |           |              | 619.97    | 620.05     | 619.9   |
| LTOB <sup>2</sup> Max Depth (ft)                                 | ) 1.88                             | 1.90   | 1.86   |     |     |     |                                  | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.82      | 2.87     |           |           |               |                                  | 3.09      | 3.08     | 3.11     |         |                             |           |              | 1.48      | 1.62       | 1.5     |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )        | ) 22.87                            | 23.48  | 22.81  |     |     |     |                                  | 33.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.03     | 34.34    |           |           |               |                                  | 42.28     | 43.21    | 41.30    |         |                             |           |              | 18.45     | 19.87      | 18.3    |
|                                                                  |                                    |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
|                                                                  |                                    |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area | a                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area         | a                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
| Thalweg Elevation                                                | ו                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
| LTOB <sup>2</sup> Elevation                                      | ו                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
| LTOB <sup>2</sup> Max Depth (ft)                                 | )                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )        | )                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |
|                                                                  |                                    |        |        |     |     |     |                                  | The above morphology parameters reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of I the focus on three primary morphological parameters of interest for the purposes of tracking channel change moving forward. sectional area and max depth based on each years low top of bank. These are calculated as follows:<br><b>1 - Bank Height Ratio (BHR)</b> takes the As-built bankful area as the basis for adjusting each subsequent years bankfull elevation. |           |          |           |           |               |                                  |           |          |          |         | f DMS<br>J. They<br>on. For |           |              |           |            |         |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area | a                                  |        |        |     |     |     |                                  | would                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | be adju   | sted un  | til the c | alculate  | ed bankf      | ull area v                       | vithin th | e MY1 c  | ross sec | tion su | irvey =                     | 10 ft2.   | The BHR      | would the | en be cal  | culate  |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area         | a                                  |        |        |     |     |     |                                  | the th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alweg e   | levation | tor MY    | '1 in the | e numera      | tor with                         | the diffe | erence b | etween   | the M   | Y1 ban                      | ktull ele | vation an    | d the MY  | 1 thalwe   | g eleva |
| Thalweg Elevation                                                | า                                  |        |        |     |     |     |                                  | year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | and M    | av doni   | h - The   | sa ara ha     | sed on t                         |           | olovatio | n for ea | ch vea  | are curv                    | ov (The   | مام مصد      | vationus  | ed for th  |         |
| LTOB <sup>2</sup> Elevation                                      | ו                                  |        |        |     |     |     |                                  | for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ch vear   | as above | . The     | differen  | ice betw      | een the l                        | TOB ele   | vation a | nd the t | halwe   | a eleva                     | tion (sar | ne as in t   | he BHR c  | alculation | n) will |
| LTOB <sup>2</sup> Max Depth (ft)                                 | )                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | en year i |          |           | ci ci     |               |                                  |           |          | the t    |         | 5 2.270                     |           |              |           |            | .,      |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )        | )                                  |        |        |     |     |     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          |           |           |               |                                  |           |          |          |         |                             |           |              |           |            |         |

Note: The smaller the channel the closer the survey measurements are to their limit of reliable detection, therefore inter-annual variation in morphological measurement (as a percentage) is by default magnified as channel size decereases. Some of the variability above is the result of this factor and some is due to the large amount of depositional sediments observed.



, the IRT and industry mitigation providers/practitioners. The outcome resulted in are the bank height ratio using a constant As-built bankfull area and the cross

r example if the As-built bankfull area was 10 ft2, then the MY1 bankfull elevation d with the difference between the low top of bank (LTOB) elevation for MY1 and ation in the denominator. This same process is then carried out in each successive

B in the BHR calculation). Area below the LTOB elevation will be used and tracked be recroded and tracked above as LTOB max depth.

|                                                                  |                                             |        |        |     |     |     |     | Та                                                                                                                                                                                                                                                                                                                                                                  | ble 10                                | B. Mo    | nitor     | ing Da         | ta - Cro  | oss Sec    | tion N    | lorpho   | logy N                                | Monit   | oring    | Sumn     | nary       |            |            |         |
|------------------------------------------------------------------|---------------------------------------------|--------|--------|-----|-----|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|-----------|----------------|-----------|------------|-----------|----------|---------------------------------------|---------|----------|----------|------------|------------|------------|---------|
|                                                                  | (Nesbit/ DMS:100121) Glen Branch Downstream |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
|                                                                  | Glen Br (Downstream) - XS 9 (Pool)          |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     | Glen Br (Downstream) - XS 10 (Riffle) |          |           |                |           |            |           |          | Glen Br (Downstream) - XS 11 (Riffle) |         |          |          |            |            |            |         |
|                                                                  | MY0                                         | MY1    | MY2    | MY3 | MY5 | MY7 | MY+ | MY0                                                                                                                                                                                                                                                                                                                                                                 | MY1                                   | MY2      | MY3       | MY5            | MY7       | MY+        | MY0       | MY1      | MY2                                   | MY3     | MY5      | MY7      | MY+        | MY0        | MY1        | MY      |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area | 626.03                                      | 625.95 | 626.02 |     |     |     |     | 626.04                                                                                                                                                                                                                                                                                                                                                              | 626.05                                | 626.06   |           |                |           |            | 632.51    | 632.46   | 632.50                                |         |          |          |            | 632.69     | 632.67     | 632.0   |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area         | 1.03                                        | 1.03   | 0.97   |     |     |     |     | 1.00                                                                                                                                                                                                                                                                                                                                                                | 1.05                                  | 1.09     |           |                |           |            | 1.00      | 1.03     | 1.02                                  |         |          |          |            | 1.00       | 1.02       | 1.03    |
| Thalweg Elevation                                                | 623.71                                      | 623.57 | 623.60 |     |     |     |     | 624.59                                                                                                                                                                                                                                                                                                                                                              | 624.62                                | 624.55   |           |                |           |            | 631.16    | 631.19   | 631.22                                |         |          |          |            | 630.43     | 630.34     | 630.2   |
| LTOB <sup>2</sup> Elevation                                      | 626.09                                      | 626.02 | 625.96 |     |     |     |     | 626.04                                                                                                                                                                                                                                                                                                                                                              | 626.12                                | 626.19   |           | `              |           |            | 632.51    | 632.50   | 632.52                                |         |          |          |            | 632.69     | 632.72     | 632.7   |
| LTOB <sup>2</sup> Max Depth (ft                                  | 2.38                                        | 2.45   | 2.36   |     |     |     |     | 1.45                                                                                                                                                                                                                                                                                                                                                                | 1.50                                  | 1.65     |           |                |           |            | 1.34      | 1.31     | 1.30                                  |         |          |          |            | 2.27       | 2.38       | 2.48    |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )        | 26.04                                       | 26.21  | 23.88  |     |     |     |     | 14.74                                                                                                                                                                                                                                                                                                                                                               | 15.77                                 | 16.67    |           |                |           |            | 13.17     | 13.83    | 13.53                                 |         |          |          |            | 26.11      | 27.04      | 27.2    |
|                                                                  |                                             |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
|                                                                  |                                             |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area | a                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area         | a                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| Thalweg Elevation                                                | ו                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| LTOB <sup>2</sup> Elevation                                      | ו                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| LTOB <sup>2</sup> Max Depth (ft                                  | )                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )        | )                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
|                                                                  |                                             |        |        |     |     |     |     | The above morphology parameters reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the focus on three primary morphological parameters of interest for the purposes of tracking channel change moving forward. They sectional area and max depth based on each years low top of bank. These are calculated as follows: |                                       |          |           |                |           |            |           |          |                                       |         |          |          |            |            |            |         |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area | a                                           |        |        |     |     |     |     | 1 - Ba                                                                                                                                                                                                                                                                                                                                                              | ink Heig                              | ht Ratio | (BHR)     | takes ti       | ne As-bu  | ilt bankfı | ıl area a | s the ba | sis for a                             | diustin | g each s | subseau  | ient vear  | s bankfull | elevatio   | n. For  |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area         | a                                           |        |        |     |     |     |     | would                                                                                                                                                                                                                                                                                                                                                               | l be adju                             | isted un | til the o | alculate       | ed bankf  | ull area v | vithin th | e MY1 c  | ross sec                              | tion su | rvey = 1 | 10 ft2.  | The BHR    | would the  | an be cal  | culate  |
| Thalweg Elevation                                                | ו                                           |        |        |     |     |     |     | the th                                                                                                                                                                                                                                                                                                                                                              | alweg e                               | levation | for M     | '1 in the      | e numera  | ator with  | the diffe | erence b | etween                                | the M   | Y1 banl  | full ele | vation an  | d the MY   | 1 thalwe   | g eleva |
| LTOB <sup>2</sup> Elevation                                      | 1                                           |        |        |     |     |     |     | year.                                                                                                                                                                                                                                                                                                                                                               | OB Area                               | and M    | av dan    | <b>h</b> - Tho | co aro ha | sod on t   |           | مامىء+ند | on for or                             | h ver   | rc curv  | av (Tha  | camo elo   | vationus   | ad for th  |         |
| LTOB <sup>2</sup> Max Depth (ft                                  | )                                           |        |        |     |     |     |     | for ea                                                                                                                                                                                                                                                                                                                                                              | ch year                               | as above | e. The    | differen       | ice betw  | een the L  | TOB ele   | vation a | nd the t                              | halwe   | g elevat | ion (sar | ne as in t | he BHR ca  | alculation | n) will |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup>          | )                                           |        |        |     |     |     |     |                                                                                                                                                                                                                                                                                                                                                                     | 1                                     |          | -         |                |           |            |           |          |                                       | 2       |          | 1        |            |            |            | , .     |

Note: The smaller the channel the closer the survey measurements are to their limit of reliable detection, therefore inter-annual variation in morphological measurement (as a percentage) is by default magnified as channel size decereases. Some of the variability above is the result of this factor and some is due to the large amount of depositional sediments observed.



r example if the As-built bankfull area was 10 ft2, then the MY1 bankfull elevation d with the difference between the low top of bank (LTOB) elevation for MY1 and ation in the denominator. This same process is then carried out in each successive

3 in the BHR calculation). Area below the LTOB elevation will be used and tracked be recroded and tracked above as LTOB max depth.

| Table 10C. Monitoring Data - Cross Section Morphology Monitoring Summary |        |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
|--------------------------------------------------------------------------|--------|--------|-------------------------------|-----|-----|-----|-----|---------------------------------|---------------------------------|--------------------------------|-------------------------------|-----------------------------|----------------------------------|-------------------------------------|--------------------------------------|------------------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|------------------------|-------------------------------|------------------------|--------------------|------------------|------------------------|------------------------|-------------------------|---------------------|-----------------------|---------------------|-------------------|--------------------------|----|
| (Nesbit/ DMS:100121) UT 1 and UT 2                                       |        |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
|                                                                          |        | UT     | UT 1 - Cross Section 7 (Pool) |     |     |     |     | UT 1 - Cross Section 8 (Riffle) |                                 |                                |                               |                             |                                  |                                     | UT 2 - Cross Section 3 (Riffle)      |                                    |                            |                               |                               |                                |                                |                        | UT 2 - Cross Section 4 (Pool) |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
|                                                                          | MY0    | MY1    | MY2                           | MY3 | MY5 | MY7 | MY+ | MY0                             | MY1                             | MY2                            | MY3                           | MY5                         | MY7                              | MY+                                 | MY0                                  | MY1                                | MY                         | (2 M)                         | /3 M'                         | Υ5 M                           | 7 MY+                          | MY0                    | MY1                           | MY2                    | MY3                | MY5              | 5 MY7                  | MY+                    |                         |                     | Τ                     | Τ                   |                   |                          |    |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area         | 629.22 | 629.26 | 629.32                        |     |     |     |     | 629.40                          | 629.35                          | 629.37                         |                               |                             |                                  |                                     | 618.4                                | 1 618.3                            | 5 618.                     | .36                           |                               |                                |                                | 618.33                 | 618.49                        | 618.51                 | -                  |                  |                        |                        |                         |                     |                       |                     |                   |                          | _  |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area                 | 1.00   | 1.01   | 1.01                          |     |     |     |     | 1.00                            | 1.06                            | 1.05                           |                               |                             |                                  |                                     | 1.00                                 | 1.05                               | 0.8                        | 39                            |                               |                                |                                | 1.00                   | 1.02                          | 1.02                   |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| Thalweg Elevation                                                        | 627.64 | 627.70 | 627.84                        |     |     |     |     | 628.44                          | 628.36                          | 628.25                         |                               |                             |                                  |                                     | 617.7                                | 8 617.8                            | 3 617.                     | .77                           |                               |                                |                                | 617.17                 | 617.50                        | 617.43                 | 6                  |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| LTOB <sup>2</sup> Elevation                                              | 629.22 | 629.28 | 629.34                        |     |     |     |     | 629.40                          | 629.41                          | 629.43                         |                               | ``                          |                                  |                                     | 618.4                                | 1 618.3                            | 7 618.                     | .30                           |                               |                                |                                | 618.33                 | 618.52                        | 618.53                 | ;                  |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| LTOB <sup>2</sup> Max Depth (ft)                                         | 1.58   | 1.58   | 1.50                          |     |     |     |     | 0.96                            | 1.05                            | 1.18                           |                               |                             |                                  |                                     | 0.64                                 | 0.54                               | 0.5                        | 52                            |                               |                                |                                | 1.17                   | 1.02                          | 1.10                   |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )                | 11.58  | 11.81  | 11.91                         |     |     |     |     | 7.66                            | 8.42                            | 8.36                           |                               |                             |                                  |                                     | 2.43                                 | 2.64                               | 2.0                        | )4                            |                               |                                |                                | 5.26                   | 5.47                          | 5.42                   |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
|                                                                          |        |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
|                                                                          |        |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area         | a      |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area                 | 9      |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| Thalweg Elevation                                                        | I      |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| LTOB <sup>2</sup> Elevation                                              | I      |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| LTOB <sup>2</sup> Max Depth (ft)                                         | )      |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )                | )      |        |                               |     |     |     |     |                                 |                                 |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               |                               |                                |                                |                        |                               |                        |                    |                  |                        |                        |                         |                     |                       |                     |                   |                          |    |
|                                                                          |        |        |                               |     |     |     |     | The at<br>the fo<br>sectio      | oove mo<br>cus on t<br>nal area | orpholog<br>hree pri<br>and ma | gy para<br>imary r<br>ax dept | meters<br>norpho<br>h based | reflect<br>logical p<br>d on eac | the 2018<br>parameter<br>h years lo | guidance<br>s of inteners<br>w top o | e that ai<br>erest for<br>of bank. | ose fro<br>the pu<br>These | om the<br>urposes<br>are calo | mitigat<br>of trac<br>culated | ion tec<br>king ch<br>as follo | hnical woi<br>annel cha<br>ws: | kgroup co<br>Ige movir | onsisting o<br>g forward      | of DMS, t<br>d. They a | the IRT<br>are the | and in<br>bank ł | ndustry n<br>height ra | nitigatio<br>Itio usin | n provide<br>g a consta | rs/prac<br>int As-t | titioner<br>ouilt bar | s. The<br>ıkfull ar | outcon<br>rea and | ne resulted<br>the cross | in |
| Bankfull Elevation (ft) - Based on AB-Bankfull <sup>1</sup> Area         | 9      |        |                               |     |     |     |     | 1 - Ba                          | nk Heig                         | ht Ratio                       | (BHR)                         | takes t                     | he As-b                          | uilt bankf                          | ul area                              | as the b                           | asis for                   | r adiusti                     | ing eac                       | h subse                        | auent vea                      | rs bankfu              | ll elevatio                   | n. For e               | xample             | e if the         | e As-built             | bankfu                 | l area wa               | s 10 ft2            | 2. then t             | he MY               | L bankf           | ull elevatior            | n  |
| Bank Height Ratio_Based on AB Bankfull <sup>1</sup> Area                 | 9      |        |                               |     |     |     |     | would                           | be adju                         | sted un                        | til the                       | calculat                    | ed banl                          | kfull area                          | within t                             | he MY1                             | cross s                    | section                       | survey                        | = 10 ft2                       | . The BHI                      | would th               | ien be cal                    | culated                | with the           | e diffe          | erence be              | etween                 | he low to               | p of ba             | ink (LTC              | )B) elev            | ation f           | or MY1 and               | i  |
| Thalweg Elevation                                                        | 1      |        |                               |     |     |     |     | the th                          | alweg e                         | levation                       | for M                         | Y1 in th                    | e nume                           | rator with                          | the dif                              | ference                            | betwe                      | en the I                      | MY1 ba                        | inkfull e                      | levation a                     | nd the M               | Y1 thalwe                     | g elevat               | ion in tł          | he der           | nominate               | or. This               | same pro                | cess is t           | then car              | rried ou            | ut in ea          | ch successiv             | ve |
| LTOB <sup>2</sup> Elevation                                              | n      |        |                               |     |     |     |     | year.                           |                                 | and M                          | av den                        | <b>th _</b> The             | so are l                         | hased on                            |                                      | R alavat                           | ion for                    | each w                        | oarc cu                       | rvov (Ti                       | ne same e                      | evation                | ed for th                     |                        | n tho P            | HR cal           | Iculation              | ) Area                 | helow the               |                     | olovatic              | vo will k           | ام الدمط          | and tracke               | hd |
| LTOB <sup>2</sup> Max Depth (ft)                                         | )      |        |                               |     |     |     |     | for ea                          | ch year                         | as abov                        | e. The                        | differe                     | nce bet                          | ween the                            | LTOB el                              | evation                            | and th                     | e thalw                       | eg elev                       | vation (s                      | ame as in                      | the BHR of             | calculatio                    | n) will be             | e recroc           | ded an           | nd tracke              | d above                | as LTOB                 | max de              | pth.                  |                     | ic useu           |                          | u  |
| LTOB <sup>2</sup> Cross Sectional Area (ft <sup>2</sup> )                | )      |        |                               |     |     |     |     |                                 | <b>,</b> = ».                   |                                |                               |                             |                                  |                                     |                                      |                                    |                            |                               | 5                             |                                |                                |                        |                               | ,                      |                    |                  |                        |                        |                         |                     | ·                     |                     |                   |                          |    |

Note: The smaller the channel the closer the survey measurements are to their limit of reliable detection, therefore inter-annual variation in morphological measurement (as a percentage) is by default magnified as channel size decereases. Some of the variability above is the result of this factor and some is due to the large amount of depositional sediments observed.

# Appendix D: Hydrologic Data

Table 11. Verification of Bankfull Events Glen Branch Crest Gauge Graph Table 12. Groundwater Hydrology Data Groundwater Gauge Graphs Tables 13A-B. Channel Evidence Surface Water Gauge Graphs Figure D1. 30-70 Percentile Graph for Rainfall WETS Table

| Date of Data<br>Collection | Date of Occurrence | Method                                                                                                                                                                                                                                   | Photo<br>(if available) |
|----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| July 11, 2022              | July 11, 2022      | Crest gauges documented a bankfull event on Glen Branch<br>and UT2 after 2.55" of rain was recorded between July 6-11,<br>2022 at an on-site rain gauge. Glen Branch crested at 1.80 ft,<br>and UT2 crested at 1.36 ft.                  |                         |
| June 8, 2023               | April 8, 2023      | Flow gauges documented a bankfull event on UT1 and UT2<br>after 2.04" of rain was recorded on April 8, 2023 by an on-<br>site rain gauge. Additionally, wrack was observed in the<br>floodplain of UT1 during the subsequent Site visit. | 1                       |

Table 11. Verification of Bankfull Events





Table 12. Groundwater Hydrology DataSummary of Monitoring Period/Hydrology Success Criteria by Year

|       | 12% Hydrope   | 12% Hydroperiod Success Criteria Achieved - Max Consecutive Days During Growing Season |        |        |        |        |        |  |  |  |  |  |  |  |  |
|-------|---------------|----------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|--|--|--|--|
| Gauge | (Percentage)  |                                                                                        |        |        |        |        |        |  |  |  |  |  |  |  |  |
|       | Year 1        | Year 2                                                                                 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 |  |  |  |  |  |  |  |  |
|       | (2022)        | (2023)                                                                                 | (2024) | (2025) | (2026) | (2027) | (2028) |  |  |  |  |  |  |  |  |
| 1     | No – 16 Days  | Yes – 38 Days                                                                          |        |        |        |        |        |  |  |  |  |  |  |  |  |
| T     | (6.6%)        | (15.64%)                                                                               |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 2     | No – 4 Days   | No – 13 Days                                                                           |        |        |        |        |        |  |  |  |  |  |  |  |  |
|       | (1.6%)        | (5.35%)                                                                                |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 3     | Yes – 50 Days | Yes – 69 Days                                                                          |        |        |        |        |        |  |  |  |  |  |  |  |  |
|       | (20.6%)       | (28.4%)                                                                                |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 4     | No – 27 Days  | No – 25 Days                                                                           |        |        |        |        |        |  |  |  |  |  |  |  |  |
|       | (11.1%)       | (10.29%)                                                                               |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 5     | Yes – 30 Days | Yes – 36 Days                                                                          |        |        |        |        |        |  |  |  |  |  |  |  |  |
|       | (12.3%)       | (14.81%)                                                                               |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 6     | No – 8 Days   | No – 20 Days                                                                           |        |        |        |        |        |  |  |  |  |  |  |  |  |
|       | (3.3%)        | (8.23%)                                                                                |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 7     | No – 9 Days   | No – 20 Days                                                                           |        |        |        |        |        |  |  |  |  |  |  |  |  |
| /     | (3.7%)        | (8.23%)                                                                                |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 0     | No – 6 Days   | No – 20 Days                                                                           |        |        |        |        |        |  |  |  |  |  |  |  |  |
| ŏ     | (2.5%)        | (8.23%)                                                                                |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 0     | Yes – 49 Days | Yes – 70 Days                                                                          |        |        |        |        |        |  |  |  |  |  |  |  |  |
| 9     | (20.2%)       | (28.81%)                                                                               |        |        |        |        |        |  |  |  |  |  |  |  |  |


















## Table 13A. UT-1 Channel Evidence

| UT-1 Upstream Channel Evidence                                                                                                                                                      | Year 2 (2023) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Max consecutive days channel flow                                                                                                                                                   | 158           |
| Total cumulative days channel flow                                                                                                                                                  | 286           |
| Presence of litter and debris (wracking)                                                                                                                                            | Yes           |
| Leaf litter disturbed or washed away                                                                                                                                                | Yes           |
| Matted, bent, or absence of vegetation (herbaceous or otherwise)                                                                                                                    | Yes           |
| Sediment deposition and/or scour indicating sediment transport                                                                                                                      | Yes           |
| Water staining due to continual presence of water                                                                                                                                   | Yes           |
| Formation of channel bed and banks                                                                                                                                                  | Yes           |
| Sediment sorting within the primary path of flow                                                                                                                                    | Yes           |
| Sediment shelving or a natural line impressed on the banks                                                                                                                          | Yes           |
| Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes           |
| Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems                                     | Yes           |
| Exposure of woody plant roots within the primary path of flow                                                                                                                       | No            |
| Other:                                                                                                                                                                              |               |

### Table 13B. UT-2 Channel Evidence

| UT-2 Channel Evidence                                                                                                                                                               | Year 2 (2023) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Max consecutive days channel flow                                                                                                                                                   | 132           |
| Total cumulative days channel flow                                                                                                                                                  | 297           |
| Presence of litter and debris (wracking)                                                                                                                                            | Yes           |
| Leaf litter disturbed or washed away                                                                                                                                                | Yes           |
| Matted, bent, or absence of vegetation (herbaceous or otherwise)                                                                                                                    | Yes           |
| Sediment deposition and/or scour indicating sediment transport                                                                                                                      | Yes           |
| Water staining due to continual presence of water                                                                                                                                   | Yes           |
| Formation of channel bed and banks                                                                                                                                                  | Yes           |
| Sediment sorting within the primary path of flow                                                                                                                                    | Yes           |
| Sediment shelving or a natural line impressed on the banks                                                                                                                          | Yes           |
| Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes           |
| Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems                                     | Yes           |
| Exposure of woody plant roots within the primary path of flow                                                                                                                       | No            |
| Other:                                                                                                                                                                              |               |







# WETS Station: MONROE 2 SE, NC

## Requested years: 1992 -2022

| Month   | Avg Max<br>Temp | Avg Min<br>Temp | Avg<br>Mean<br>Temp | Avg<br>Precip | 30%<br>chance<br>precip less<br>than | 30%<br>chance<br>precip<br>more than | Avg number<br>days precip<br>0.10 or more | Avg<br>Snowfall |  |
|---------|-----------------|-----------------|---------------------|---------------|--------------------------------------|--------------------------------------|-------------------------------------------|-----------------|--|
| Jan     | 53.0            | 31.1            | 42.0                | 3.94          | 2.78                                 | 4.67                                 | 6                                         | 1.6             |  |
| Feb     | 56.8            | 33.6            | 45.2                | 3.36          | 2.54                                 | 3.92                                 | 6                                         | 0.6             |  |
| Mar     | 64.6            | 39.7            | 52.2                | 3.89          | 2.89                                 | 4.55                                 | 6                                         | 0.3             |  |
| Apr     | 73.8            | 47.9            | 60.8                | 3.32          | 1.98                                 | 4.03                                 | 5                                         | 0.1             |  |
| May     | 80.6            | 57.0            | 68.8                | 3.38          | 2.03                                 | 4.10                                 | 5                                         | 0.0             |  |
| Jun     | 87.6            | 65.6            | 76.6                | 4.43          | 2.84                                 | 5.34                                 | 7                                         | 0.0             |  |
| Jul     | 90.9            | 69.1            | 80.0                | 4.10          | 2.66                                 | 4.93                                 | 7                                         | 0.0             |  |
| Aug     | 88.9            | 68.1            | 78.5                | 4.61          | 2.91                                 | 5.56                                 | 7                                         | 0.0             |  |
| Sep     | 83.4            | 61.8            | 72.6                | 4.52          | 2.34                                 | 5.52                                 | 5                                         | 0.0             |  |
| Oct     | 73.9            | 49.7            | 61.8                | 3.61          | 2.05                                 | 4.35                                 | 4                                         | 0.0             |  |
| Nov     | 63.7            | 38.7            | 51.2                | 3.42          | 1.79                                 | 4.18                                 | 5                                         | 0.0             |  |
| Dec     | 55.5            | 33.6            | 44.6                | 3.97          | 2.78                                 | 4.72                                 | 6                                         | 0.2             |  |
| Annual: |                 |                 |                     |               | 41.88                                | 50.57                                |                                           |                 |  |
| Average | 72.7            | 49.7            | 61.2                | -             | -                                    | -                                    | -                                         | -               |  |
| Total   | -               | -               | -                   | 46.56         |                                      |                                      | 70                                        | 2.8             |  |
|         |                 |                 |                     |               |                                      |                                      |                                           |                 |  |

#### GROWING SEASON DATES

| Years with missing data:  | 24 deg =  | 28 deg = | 32 deg =  |
|---------------------------|-----------|----------|-----------|
|                           | 3         | 1        | 1         |
| Years with no occurrence: | 24 deg =  | 28 deg = | 32 deg =  |
|                           | 0         | 0        | 0         |
| Data years used:          | 24 deg =  | 28 deg = | 32 deg =  |
|                           | 28        | 30       | 30        |
| Probability               | 24 F or   | 28 F or  | 32 F or   |
|                           | higher    | higher   | higher    |
| 50 percent *              | 2/28 to   | 3/17 to  | 4/4 to    |
|                           | 12/2: 277 | 11/14:   | 11/3: 213 |
|                           | days      | 242 days | days      |
| 70 percent *              | 2/22 to   | 3/12 to  | 3/30 to   |
|                           | 12/9: 290 | 11/19:   | 11/9: 224 |
|                           | days      | 252 days | days      |

\* Percent chance of the growing season occurring between the Beginning and Ending dates.

| s<br>p | STATS TABLE - total<br>precipitation (inches) |      |      |       |      |      |       |      |       |           |          |           |      |           |
|--------|-----------------------------------------------|------|------|-------|------|------|-------|------|-------|-----------|----------|-----------|------|-----------|
|        | Yr                                            | Jan  | Feb  | Mar   | Apr  | May  | Jun   | Jul  | Aug   | Sep       | Oct      | Nov       | Dec  | Ann       |
|        | 1896                                          | 2.07 | 5.53 | M1.50 | 2.00 | 4.24 | 7.38  | 9.21 | 1.42  | M3.<br>30 | 1.<br>58 | 3.37      | 2.37 | 43.<br>97 |
|        | 1897                                          | 2.27 | 5.85 | 6.07  | 4.81 | 3.63 | 4.22  | 6.73 | 2.05  | 2.02      | 1.<br>91 | 2.40      | 2.17 | 44.<br>13 |
|        | 1898                                          | 2.34 | 0.84 | 4.07  | 3.16 | 1.28 | 3.46  | 5.10 | 11.65 | 4.72      | 4.<br>72 | M4.<br>22 | 1.11 | 46.<br>67 |
|        | 1899                                          | 3.68 | 8.66 | 5.23  | 2.21 | 2.55 | 3.02  | 4.59 | 2.97  | 3.09      | 7.<br>10 | 3.43      | 2.73 | 49.<br>26 |
|        | 1900                                          | 1.84 | 4.93 | 4.78  | 5.63 | 0.92 | 5.57  | 6.95 | 3.50  | 1.62      | 2.<br>78 | 5.76      | 5.17 | 49.<br>45 |
|        | 1901                                          | 2.83 | 1.71 | 5.00  | 8.54 | 7.20 | 8.15  | 3.50 | 14.00 | 6.24      | 2.<br>16 | 0.64      | 6.40 | 66.<br>37 |
|        | 1902                                          | 3.12 | 6.81 | 3.19  | 2.12 | 2.23 | 3.29  | 2.79 | 5.49  | 4.25      | 5.<br>54 | 4.50      | 3.13 | 46.<br>46 |
|        | 1903                                          | 3.03 | 8.63 | 6.53  | 3.32 | 0.59 | 11.07 | 1.71 | 4.62  | 3.03      | 3.<br>40 | 1.21      | 1.56 | 48.<br>70 |

| 1904 | 2.59  | 4.15  | 2.22 | 0.85 | 2.34 | 4.34  | 5.46  | 11.89 | 1.31      | 0.<br>98  | 3.64      | 3.78 | 43.<br>55 |
|------|-------|-------|------|------|------|-------|-------|-------|-----------|-----------|-----------|------|-----------|
| 1905 | 1.69  | 5.32  | 1.83 | 4.66 | 6.68 | 0.93  | 4.70  | 11.01 | 1.31      | 0.<br>97  | 0.82      | 7.09 | 47.<br>01 |
| 1906 | 5.14  | 1.25  | 5.06 | 2.17 | 3.96 | 4.65  | 7.51  | 6.65  | 3.40      | 6.<br>02  | 0.66      | 2.50 | 48.<br>97 |
| 1907 | 0.24  | 3.62  | 1.76 | 4.13 | 4.34 | 8.39  | 5.84  | 2.43  | 3.94      | 0.<br>27  | 5.00      | 6.40 | 46.<br>36 |
| 1908 | M5.21 | 5.62  | 4.67 | 3.82 | 3.21 | 3.88  | 4.80  | 19.38 | 5.09      | 7.<br>52  | 1.68      | 4.19 | 69.<br>07 |
| 1909 | 1.27  | 4.27  | 2.79 | 2.47 | 5.60 | 6.95  | 2.98  | 3.00  | 2.51      | 1.<br>31  | 0.20      | 2.94 | 36.<br>29 |
| 1910 | 3.45  | 3.88  | 1.36 | 1.08 | 4.49 | 6.15  | 4.86  | 5.42  | 1.70      | 4.<br>23  | 0.36      | 3.35 | 40.<br>33 |
| 1911 | 2.50  | 1.83  | 2.55 | 1.83 | 0.64 | 1.68  | 1.96  | 5.64  | 3.69      | 5.<br>02  | 3.33      | 6.12 | 36.<br>79 |
| 1912 | 3.66  | 6.98  | 7.68 | 1.89 | 3.70 | 7.97  | 4.25  | 2.93  | 6.02      | 1.<br>73  | 3.93      | 2.37 | 53.<br>11 |
| 1913 | 4.68  | 3.78  | 7.52 | 2.40 | 3.00 | 4.47  | 5.22  | 4.04  | 5.74      | M2.<br>28 | 2.69      | 4.41 | 50.<br>23 |
| 1914 | 2.70  | M3.09 | 2.32 | 3.42 | 0.25 | 4.16  | 5.34  | 4.62  | 2.06      | 3.<br>30  | M3.<br>23 | 6.90 | 41.<br>39 |
| 1915 | 6.28  | 2.13  | 3.81 | 1.54 | 4.90 | 5.53  | 2.08  | 7.40  | 2.59      | 3.<br>01  | 2.50      | 3.27 | 45.<br>04 |
| 1916 | 2.64  | 4.76  | 1.95 | 1.24 | 4.46 | 5.21  | 12.44 | 4.12  | 0.85      | 1.<br>68  | 0.49      | 1.86 | 41.<br>70 |
| 1917 | 2.67  | 4.45  | 4.56 | 3.92 | 4.07 | 6.75  | 4.46  | 2.36  | 4.97      | 3.<br>94  | 1.24      | 1.59 | 44.<br>98 |
| 1918 | 4.81  | 1.29  | 2.15 | 6.46 | 2.19 | 2.29  | 5.05  | 4.21  | 3.78      | 2.<br>23  | 2.39      | 3.72 | 40.<br>57 |
| 1919 | 5.42  | 4.44  | 2.67 | 2.75 | 5.89 | 2.88  | 8.49  | 3.50  | 1.01      | 3.<br>51  | 0.56      | 1.95 | 43.<br>07 |
| 1920 | 3.79  | 4.56  | 4.79 | 3.73 | 1.37 | 3.89  | 4.20  | 9.51  | 2.67      | 0.<br>53  | 4.05      | 4.21 | 47.<br>30 |
| 1921 | 4.84  | 5.45  | 3.56 | 2.47 | 6.02 | 4.15  | 3.69  | 3.67  | 1.15      | 1.<br>39  | 3.20      | 1.67 | 41.<br>26 |
| 1922 | 3.71  | 7.88  | 9.00 | 7.41 | 3.63 | 5.20  | 3.98  | 3.71  | 0.88      | 4.<br>44  | 1.15      | 4.36 | 55.<br>35 |
| 1923 | 4.07  | 4.03  | 5.12 | 3.40 | 4.46 | 0.69  | 4.83  | 3.22  | 3.16      | 1.<br>23  | 2.39      | 2.19 | 38.<br>79 |
| 1924 | 3.95  | 4.91  | 1.58 | 5.36 | 3.50 | 2.64  | 3.53  | 0.15  | 9.55      | 1.<br>00  | 2.09      | 4.41 | 42.<br>67 |
| 1925 | 6.36  | 1.52  | 2.40 | 1.89 | 1.42 | 3.77  | 2.08  | 1.73  | 0.80      | 2.<br>21  | M2.<br>65 | 2.70 | 29.<br>53 |
| 1926 | 5.01  | 4.04  | 4.85 | 1.31 | 1.07 | 2.44  | 7.71  | 5.14  | 0.98      | 1.<br>29  | 4.16      | 3.48 | 41.<br>48 |
| 1927 | 0.84  | 3.36  | 3.96 | 2.62 | 1.13 | 4.32  | 4.21  | 2.43  | 1.81      | 5.<br>31  | 1.49      | 6.68 | 38.<br>16 |
| 1928 | 0.73  | 4.18  | 2.68 | 7.80 | 3.80 | 6.33  | 2.48  | 10.58 | 11.<br>74 | 2.<br>14  | 0.61      | 1.29 | 54.<br>36 |
| 1929 | 2.63  | 8.70  | 9.09 | 3.13 | 5.20 | 3.22  | 5.33  | 4.97  | 6.70      | 7.<br>49  | 5.33      | 3.88 | 65.<br>67 |
| 1930 | 3.51  | 0.91  | 2.21 | 1.09 | 3.12 | 4.91  | 3.42  | 4.34  | 4.17      | 1.<br>34  | 4.51      | 3.84 | 37.<br>37 |
| 1931 | 2.19  | 1.44  | 2.12 | 4.00 | 5.92 | 1.25  | 8.40  | 12.00 | 0.00      | 1.<br>35  | 0.16      | 6.60 | 45.<br>43 |
| 1932 | 6.17  | 3.71  | 3.88 | 2.91 | 4.82 | 8.21  | 3.53  | 1.70  | 2.17      | 9.<br>95  | 3.01      | 5.44 | 55.<br>50 |
| 1933 | 2.65  | 3.52  | 1.56 | 3.60 | 2.94 | 2.99  | 4.39  | 6.22  | 0.71      | 1.<br>29  | 0.77      | 1.41 | 32.<br>05 |
| 1934 | 1.52  | 2.75  | 4.30 | 2.78 | 5.06 | 4.34  | 4.94  | 4.50  | 3.61      | 3.<br>00  | 4.27      | 3.00 | 44.<br>07 |
| 1935 | 2.81  | 2.83  | 2.16 | 4.26 | 3.72 | 1.77  | 3.99  | 2.57  | M7.<br>52 | 0.<br>70  | 2.52      | 2.73 | 37.<br>58 |
| 1936 | 8.17  | 4.73  | 7.13 | 7.60 | 0.07 | 4.05  | 3.41  | 5.41  | 5.12      | 5.<br>46  | 1.48      | 5.76 | 58.<br>39 |
| 1937 | 5.49  | 3.68  | 2.13 | 5.90 | 1.30 | 10.30 | 1.91  | 5.96  | 0.50      | 1.<br>98  | 2.28      | 2.47 | 43.<br>90 |

| 1938 | 2.09  | 0.67  | 2.43  | 4.16 | 2.14 | 5.83 | 7.31  | 2.52  | 3.79      | 1.<br>06  | 2.21      | 3.31      | 37.<br>52 |
|------|-------|-------|-------|------|------|------|-------|-------|-----------|-----------|-----------|-----------|-----------|
| 1939 | 3.36  | 8.58  | 2.91  | 2.70 | 1.86 | 3.23 | 8.05  | 7.13  | 1.76      | 0.<br>44  | 1.40      | M2.<br>64 | 44.<br>06 |
| 1940 | 2.90  | 2.82  | 2.13  | 1.96 | 2.63 | 2.28 | 3.16  | 3.35  | 0.63      | 0.<br>73  | 5.96      | 2.57      | 31.<br>12 |
| 1941 | M2.13 | 2.47  | 2.82  | 2.89 | 0.04 | 5.23 | 3.97  | 8.36  | 1.89      | 1.<br>84  | 0.73      | 5.38      | 37.<br>75 |
| 1942 | 2.43  | 3.38  | 6.93  | 1.75 | 5.93 | 3.96 | 6.30  | 6.01  | 3.43      | 2.<br>06  | 2.83      | 3.21      | 48.<br>22 |
| 1943 | 4.31  | 1.67  | 5.42  | 2.94 | 2.68 | 4.84 | 3.41  | 2.41  | 2.01      | 0.<br>26  | 0.79      | 3.81      | 34.<br>55 |
| 1944 | M3.80 | 6.62  | 7.76  | 5.97 | 0.87 | 2.72 | 9.39  | 1.87  | 2.63      | 3.<br>35  | 2.61      | 1.74      | 49.<br>33 |
| 1945 | 2.48  | 5.21  | 1.51  | 2.61 | 2.78 | 2.36 | 3.03  | 3.98  | 11.<br>44 | 1.<br>57  | 1.49      | 6.62      | 45.<br>08 |
| 1946 | 2.90  | 2.25  | 1.99  | 4.54 | 2.04 | 3.17 | 11.25 | 3.60  | M2.<br>33 | 5.<br>48  | 1.71      | 1.11      | 42.<br>37 |
| 1947 | 5.96  | 0.99  | 4.29  | 3.78 | 1.16 | 3.06 | 2.70  | 3.39  | 5.17      | 2.<br>50  | 6.36      | 2.52      | 41.<br>88 |
| 1948 | 4.30  | 3.58  | 5.32  | 3.34 | 5.14 | 3.18 | 2.90  | 3.82  | 5.58      | 2.<br>34  | 11.<br>12 | 5.88      | 56.<br>50 |
| 1949 | 3.37  | 4.12  | M1.93 | 4.99 | 6.44 | 1.95 | 4.18  | 8.68  | 9.78      | 3.<br>47  | 2.76      | 2.41      | 54.<br>08 |
| 1950 | 2.16  | 1.52  | 3.21  | 1.17 | 2.23 | 2.67 | 5.00  | 3.66  | 3.35      | 1.<br>87  | 1.87      | 2.81      | 31.<br>52 |
| 1951 | 1.72  | M0.89 | 4.47  | 4.45 | 0.50 | 6.30 | 4.18  | 3.44  | 6.76      | 0.<br>40  | 3.19      | 4.66      | 40.<br>96 |
| 1952 | 3.29  | 5.16  | 6.90  | 3.53 | 3.91 | 2.32 | 5.21  | 13.00 | 3.07      | 0.<br>80  | M1.<br>35 | 3.82      | 52.<br>36 |
| 1953 | 3.05  | 4.77  | 4.17  | 3.26 | 3.47 | 2.71 | 5.44  | 8.59  | 5.88      | 0.<br>17  | 1.01      | 6.09      | 48.<br>61 |
| 1954 | 5.89  |       | 4.46  | 1.75 | 3.34 | 0.56 | 5.87  | 1.38  | Т         | 5.<br>81  | 2.39      | 3.02      | 34.<br>47 |
| 1955 | 3.49  | 3.67  | 1.90  | 5.59 | 2.79 | 3.61 | 6.69  | 2.67  | 1.83      | 4.<br>37  | 2.85      | 0.44      | 39.<br>90 |
| 1956 | 1.48  | 6.38  | 3.92  | 3.27 | 2.56 | 1.97 | 2.56  | 3.65  | 6.31      | 2.<br>51  | 1.37      | 1.91      | 37.<br>89 |
| 1957 | 2.21  | 2.84  | 4.15  | 1.84 | 8.25 | 3.92 | 2.26  | 4.43  | 6.26      | 2.<br>12  | 8.80      | 1.90      | 48.<br>98 |
| 1958 | 4.70  | 3.40  | 3.29  | 4.93 | 3.15 | 4.61 | 6.90  | 2.54  | 0.27      | 4.<br>24  | 0.95      | 4.32      | 43.<br>30 |
| 1959 | 2.72  | 3.03  | 3.96  | 5.73 | 2.17 | 1.78 | 12.19 | 5.43  | 8.30      | 5.<br>70  | 0.66      | 2.47      | 54.<br>14 |
| 1960 | 6.05  | 7.81  | 4.91  | 3.88 | 2.51 | 5.03 | 5.82  | 9.02  | 1.96      | 2.<br>31  | 1.60      | 2.32      | 53.<br>22 |
| 1961 | 2.41  | 6.61  | 5.29  | 4.28 | 3.33 | 5.84 | 1.42  | 4.34  | 0.20      | 0.<br>75  | 2.12      | 4.60      | 41.<br>19 |
| 1962 | 6.80  | 4.80  | 4.53  | 3.75 | 1.06 | 4.60 | 4.30  | 1.48  | 7.72      | 0.<br>34  | 5.65      | 3.42      | 48.<br>45 |
| 1963 | 3.79  | 4.07  | 3.70  | 3.07 | 6.20 | 3.80 | 4.71  | 2.08  | 4.23      | 0.<br>20  | 3.99      | 3.35      | 43.<br>19 |
| 1964 | 5.54  | 5.33  | 5.43  | 3.51 | 1.56 | 3.11 | 8.32  | 8.90  | 2.74      | 10.<br>47 | 1.56      | 5.09      | 61.<br>56 |
| 1965 | 2.15  | 3.70  | 6.15  | 3.95 | 0.31 | 4.84 | 8.22  | 4.84  | 1.60      | 2.<br>11  | 2.44      | 0.68      | 40.<br>99 |
| 1966 | 4.87  | 4.88  | 3.36  | 2.45 | 4.17 | 1.94 | 2.27  | 3.42  | 8.28      | 4.<br>28  | 1.06      | 2.64      | 43.<br>62 |
| 1967 | 1.98  | 4.32  | 1.59  | 2.54 | 4.26 | 2.10 | 4.64  | 11.61 | 4.40      | 0.<br>63  | 3.82      | 4.41      | 46.<br>30 |
| 1968 | 5.98  | 0.80  | 2.52  | 1.72 | 4.04 | 4.05 | 3.93  | 3.91  | 0.16      | 3.<br>02  | 5.18      | 2.74      | 38.<br>05 |
| 1969 | 2.40  | 5.24  | 4.22  | 4.72 | 2.76 | 4.63 | 5.36  | 7.11  | 4.39      | 2.<br>87  | 0.87      | 3.64      | 48.<br>21 |
| 1970 | 2.49  | 3.26  | 4.88  | 1.29 | 4.66 | 0.64 | M4.65 | 7.95  | 1.10      | 7.<br>64  | 1.39      | 2.49      | 42.<br>44 |
| 1971 | 6.03  | 4.67  | 6.61  | 2.96 | 5.45 | 5.04 | 5.05  | 7.84  | 1.67      | 8.<br>72  | 2.01      | 2.02      | 58.<br>07 |

| 1972 | 4.96  | 4.27  | 3.54  | 1.29 | 5.99  | 4.51  | 3.64  | 2.11  | 3.18       | 1.<br>42  | 3.56      | 9.07      | 47.<br>54 |
|------|-------|-------|-------|------|-------|-------|-------|-------|------------|-----------|-----------|-----------|-----------|
| 1973 | 5.11  | 4.75  | 4.89  | 5.98 | 4.18  | 8.99  | 4.64  | 1.55  | 2.36       | 2.<br>22  | 0.35      | 5.66      | 50.<br>68 |
| 1974 | 3.40  | 4.73  | 3.26  | 3.71 | 5.55  | 2.78  | 3.57  | 5.40  | 6.59       | Т         | 2.67      | 5.15      | 46.<br>81 |
| 1975 | 7.03  | 4.12  | 7.58  | 2.28 | 6.86  | 4.25  | 8.32  | 3.17  | 7.11       | 1.<br>29  | 2.79      | 4.76      | 59.<br>56 |
| 1976 | 2.00  | 1.23  | 4.49  | 0.48 | 4.27  | 7.17  | 4.92  | 2.03  | 3.90       | 7.<br>03  | 3.29      | 4.63      | 45.<br>44 |
| 1977 | 3.74  | 1.35  | 8.59  | 1.51 | 1.15  | 4.52  | 1.24  | 5.92  | 6.93       | 7.        | 2.87      | 2.49      | 48.       |
| 1978 | 7.87  | 0.63  | 4.39  | 2.12 | 4.03  | 5.01  | 9.70  | 2.69  | 0.86       | 1.<br>25  | 2.95      | 2.48      | 43.<br>98 |
| 1979 | 5.49  | 6.40  | 3.37  | 5.00 | 2.55  | 5.68  | 3.92  | 1.00  | 8.41       | 2.<br>32  | 6.70      | 1.40      | 52.<br>24 |
| 1980 | 4.78  | M1.50 | 9.86  | 1.54 | 3.30  | 2.46  | 2.69  | 0.69  | 9.14       | 3.<br>91  | 4.05      | 0.96      | 44.       |
| 1981 | 0.48  | 3.93  | 1.95  | 0.56 | 2.10  | 1.57  | 8.71  | 2.63  | 2.90       | 2.<br>93  | 0.81      | 7.75      | 36.<br>32 |
| 1982 | M4.00 | 7.01  | 1.87  | 4.16 | 4.14  | 5.86  | 3.77  | 4.15  | 4.24       | 6.<br>54  | 2.65      | 5.65      | 54.<br>04 |
| 1983 | 3.71  | 6.22  | 8.68  | 4.14 | 2.44  | 2.87  | 0.75  | 7.26  | 2.21       | 1.<br>91  | 4.35      | 9.06      | 53.<br>60 |
| 1984 | 6.26  | 6.27  | 5.10  | 4.15 | 5.12  | 2.53  | 7.18  | 2.92  | 0.27       | 2.<br>00  | 1.48      | 3.09      | 46.<br>37 |
| 1985 | 4.28  | 3.95  | 1.30  | 1.46 | 3.77  | 5.82  | 6.09  | 10.63 | 0.05       | 4.<br>64  | 6.46      | 0.92      | 49.<br>37 |
| 1986 | 1.40  | 1.23  | 3.08  | 0.85 | 1.13  | 1.16  | 2.84  | 13.66 | 1.63       | 2.<br>88  | 4.73      | 3.92      | 38.<br>51 |
| 1987 | 7.77  | 4.65  | 5.75  | 3.25 | 0.95  | 6.96  | 2.71  | 2.61  | M10.<br>54 | 0.<br>48  | 4.80      | 3.05      | 53.<br>52 |
| 1988 | 4.43  | 1.49  | 2.33  | 2.24 | 2.69  | 2.81  | 4.17  | 7.17  | 3.64       | 3.<br>35  | 4.15      | 1.51      | 39.<br>98 |
| 1989 | 1.77  | 5.56  | 8.05  | 5.14 | 5.89  | 5.34  | 6.12  | 4.22  | 5.48       | 6.<br>58  | 2.39      | 3.66      | 60.<br>20 |
| 1990 | 3.22  | 6.21  | 3.44  | 2.58 | 7.00  | 0.35  | 5.90  | 4.24  | 1.22       | 15.<br>94 | 2.45      | 3.50      | 56.<br>05 |
| 1991 | 6.08  | M1.96 | 7.49  | 6.08 | 3.09  | 5.43  | 7.38  | 6.96  | 1.66       | 1.<br>48  | 2.22      | 3.53      | 53.<br>36 |
| 1992 | 3.17  | 3.64  | 3.52  | 3.00 | 4.62  | 6.62  | 0.80  | 6.28  | 1.26       | 6.<br>18  | 6.17      | M2.<br>64 | 47.<br>90 |
| 1993 | 6.55  | 3.23  | 8.32  | 3.41 | 3.52  | 1.45  | 3.19  | 3.91  | 3.34       | 2.<br>60  | 3.77      | 3.44      | 46.<br>73 |
| 1994 | 4.26  | 3.44  | 4.99  | 0.75 | 2.55  | 7.97  | 6.47  | 3.02  | 5.63       | 3.<br>38  | 3.07      | 2.38      | 47.<br>91 |
| 1995 | 4.37  | 4.91  | 2.72  | 0.60 | 3.09  | 5.83  | 1.40  | 9.11  | 2.61       | 7.<br>42  | 4.41      | 1.36      | 47.<br>83 |
| 1996 | 3.92  | 2.64  | 5.37  | 4.02 | 1.30  | 3.71  | 3.06  | 5.37  | 5.19       | 4.<br>41  | 3.80      | 2.63      | 45.<br>42 |
| 1997 | 4.09  | 4.15  | 4.32  | 4.71 | M1.74 | 2.98  | M8.95 | 0.32  | 2.47       | 4.<br>43  | 4.59      | 4.32      | 47.<br>07 |
| 1998 | 9.81  | 5.27  | 5.24  | 5.28 | 3.70  | 2.89  | 6.45  | 3.70  | 7.42       | 3.<br>86  | 1.66      | 3.36      | 58.<br>64 |
| 1999 | 4.97  | 2.13  | 2.42  | 3.84 | 2.42  | 3.60  | 1.14  | 1.74  | 11.<br>36  | 4.<br>47  | 1.80      | 1.54      | 41.<br>43 |
| 2000 | M6.29 | 2.70  | 2.95  | 3.61 | 1.22  | 3.39  | 4.22  | 3.58  | 8.06       | 0.<br>00  | 2.83      | 1.41      | 40.<br>26 |
| 2001 | 1.80  | 2.27  | 5.54  | 1.56 | 1.90  | 4.70  | 4.99  | 1.04  | 2.74       | 2.<br>91  | 0.71      | 2.30      | 32.<br>46 |
| 2002 | 5.54  | 1.63  | 3.72  | 1.07 | 2.35  | 1.26  | 3.78  | 4.19  | 5.12       | 6.<br>20  | 3.69      | 4.72      | 43.<br>27 |
| 2003 | 1.90  | 6.14  | 8.04  | 6.85 | 5.21  | 5.32  | 6.65  | 6.01  | 3.66       | 2.<br>75  | 1.20      | 2.30      | 56.<br>03 |
| 2004 | 0.91  | 3.98  | 1.30  | 1.03 | 0.91  | 7.23  | 6.18  | 5.96  | 13.<br>90  | 2.<br>57  | 2.56      | 2.14      | 48.<br>67 |
| 2005 | 2.03  | M3.07 | M4.22 | 3.04 | M1.01 | M5.28 | M3.39 | 8.79  | 0.17       | 4.<br>38  | M2.<br>49 | M5.<br>13 | 43.<br>00 |

| 10.83 | 10.8 | 10.83 | 10.83 | 3  |   | 1.00  | 6.87  | Ν | ИЗ.<br>11  | 4.<br>41  | 8.31      | 3.38      | 47.<br>77   |
|-------|------|-------|-------|----|---|-------|-------|---|------------|-----------|-----------|-----------|-------------|
| 4.40  | 4.40 | 4.40  | 4.40  | )  |   | 0.96  | 2.85  | 1 | .37        | 3.<br>44  | M0.<br>31 | 4.70      | ) 28.<br>51 |
| M0.99 | M0.9 | M0.99 | N0.99 | 99 | : | 3.29  | 8.85  | 4 | .72        | M1.<br>64 | 3.09      | 5.86      | 60 46.      |
| M2.46 | M2.4 | M2.46 | M2.46 | 16 |   | 6.16  | 2.30  | 1 | .30        | 3.<br>37  | 7.26      | 8.71      | 47.<br>89   |
| 8.29  | 8.29 | 8.29  | 8.29  | 9  | N | M3.75 | M4.71 | Ν | ИО.<br>62  | M0.<br>07 | 1.44      | M2.<br>00 | 37.<br>83   |
| M4.46 | M4.4 | M4.46 | M4.46 | 16 | N | M2.42 | M5.13 | N | ∕14.<br>43 | 4.<br>69  | M3.<br>01 |           | 44.<br>58   |
| M1.66 | M1.6 | M1.66 | M1.66 | 66 | N | M5.33 | 9.83  | 4 | .79        | 1.<br>75  | M1.<br>24 | M3.<br>90 | 44.<br>39   |
| 7.68  | 7.68 | 7.68  | 7.68  | 3  | : | 5.54  | 4.19  | 1 | .46        | 0.<br>23  | 2.99      | 5.79      | 45.<br>89   |
| 3.76  | 3.76 | 3.76  | 3.76  | 5  |   | 6.24  | 2.11  | 6 | 5.55       | 1.<br>68  | 5.12      | M4.<br>85 | 51.<br>41   |
| 2.07  | 2.07 | 2.07  | 2.07  | 7  |   | 4.33  | 7.41  | 2 | 2.61       | 7.<br>92  | 9.50      | M7.<br>21 | 54.<br>42   |
| 3.55  | 3.55 | 3.55  | 3.55  | 5  | : | 2.98  | 2.45  | 3 | 8.92       | 5.<br>80  | 0.22      | 3.08      | 35.<br>65   |
| 8.08  | 8.08 | 8.08  | 8.08  | 3  | : | 5.49  | 2.67  | 3 | 8.95       | 1.<br>77  | 0.73      | 3.22      | 47.<br>49   |
| 2.65  | 2.65 | 2.65  | 2.65  | 5  | : | 3.30  | 4.73  |   | 12.<br>36  | 5.<br>59  | 6.83      | 8.64      | 61.<br>70   |
| 4.14  | 4.14 | 4.14  | 4.14  | 4  |   | 1.87  | 6.45  | 0 | .66        | 3.<br>33  | 3.28      | 7.15      | i 47.<br>36 |
| 1.96  | 1.96 | 1.96  | 1.96  | ô  |   | 4.17  | 3.45  | 5 | 5.59       | 5.<br>66  | 5.22      | 3.18      | 62.<br>62   |
| 4.25  | 4.25 | 4.25  | 4.25  | 5  | : | 2.71  | 3.59  | 1 | .49        | 2.<br>03  | 1.04      | 3.92      | 2 34.<br>34 |
| 1.22  | 1.22 | 1.22  | 1.22  | 2  |   | 6.81  | 2.33  | 4 | .41        | 2.<br>85  | 3.66      | M1.<br>01 | 43.<br>01   |
|       |      |       |       |    |   |       |       |   |            |           |           |           |             |

Notes: Data missing in any month have an "M" flag. A "T" indicates a trace of precipitation.

Data missing for all days in a month or year is blank.

Creation date: 2022-12-13

## Appendix E: Project Timeline and Contact Info

Table 14. Project Timeline Table 15. Project Contacts Email with Farm Manager about encroachments

#### Table 14. Project Timeline

|                                                                                                                 | Data Collection | Task Completion or                                             |
|-----------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------|
| Activity or Deliverable                                                                                         | Complete        | Deliverable Submission                                         |
| Project Instituted                                                                                              | NA              | Apr-19                                                         |
| Mitigation Plan Approved                                                                                        | Jun-20          | May-21                                                         |
| Construction (Grading) Completed                                                                                | NA              | 07-Dec-21                                                      |
| Planting Completed                                                                                              | NA              | 3-Feb-22                                                       |
| As-built Survey Completed                                                                                       | NA              | Jun-22                                                         |
| MY-0 Baseline Report                                                                                            | Feb-22          | Sep-22                                                         |
| Basal Bark Treatment for Privet                                                                                 | NA              | 11-Sep-22                                                      |
| Basal Bark Treatment for Privet                                                                                 | NA              | 9-Oct-22                                                       |
| Lime, fertilizer, seeding, and enhanced boundary marking                                                        | NA              | 30-Nov-22                                                      |
| MY-1 Monitoring Report                                                                                          | Nov-22          | Feb-23                                                         |
| Landwoner discussions initiated regarding encroachment, boundary<br>marking, horse tape installation            | NA              | 7-Jun-23                                                       |
| Herbicide Treatments: parrotfeather, cattail, privet, chinaberry, autumn<br>olive, princess tree, Johnson grass | NA              | 3-Jul-23, 16-Jul-23, 23-Jul-23, 24-Jul-23, 5-Aug-23, 16-Aug-23 |
| MY-2 Monitoring Report                                                                                          | Nov-23          | Feb-24                                                         |

#### Table 15. Project Contacts

| Nesbit Stream and Wetland Mitigation Site/100121 |                               |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| Provider                                         | Restoration Systems, LLC      |  |  |  |  |  |  |
|                                                  | 1101 Haynes Street, Suite 211 |  |  |  |  |  |  |
|                                                  | Raleigh, NC 27604             |  |  |  |  |  |  |
| Mitigation Provider POC                          | Worth Creech                  |  |  |  |  |  |  |
|                                                  | 919-755-9490                  |  |  |  |  |  |  |
| Designer                                         | Axiom Environmental, Inc.     |  |  |  |  |  |  |
|                                                  | 218 Snow Ave                  |  |  |  |  |  |  |
|                                                  | Raleigh, NC 27603             |  |  |  |  |  |  |
| Primary project design POC                       | Grant Lewis                   |  |  |  |  |  |  |
|                                                  | 919-215-1693                  |  |  |  |  |  |  |
| Construction Contractor                          | Land Mechanics Designs, Inc.  |  |  |  |  |  |  |
|                                                  | 126 Circle G Lane             |  |  |  |  |  |  |
|                                                  | Willow Spring, NC 27592       |  |  |  |  |  |  |
|                                                  | Charles Hill                  |  |  |  |  |  |  |
|                                                  | 919-639-6132                  |  |  |  |  |  |  |

Hi Matthew –

Thank you for highlighting this for us.

We did emphasize this to our team, but we will have another discussion to ensure we stay out of the designated areas. We apologize for the impact here and will do our best to make this right going forward.

Thanks,

Alex

From: Harrell, Matthew <Matthew.Harrell@davey.com>
Sent: Wednesday, June 7, 2023 3:28 PM
To: Alex Duchesneau <Alex.Duchesneau14@outlook.com>
Cc: Holz, Raymond <Raymond.Holz@davey.com>; franklinhowey@aol.com
Subject: Re: Nesbit Road Conservation Easement- Scalloping

Hi Alex,

This email is a follow-up and recap to our phone conversation on Monday. Please respond to acknowledge receipt.

Several weeks back we spoke by phone to discuss avoiding easement encroachments during planting this year. Specific mention was made of using only designated crossings and avoiding scalloping caused by overspray/spray drift/planting. You followed up with your crew and confirmed that you had clear mapping of the easement boundary and that planting was likely to occur soon.

On Monday 6/5/23 I inspected the easement boundary to verify that planting activities had avoided impacts to the project. Unfortunately, I was disappointed to see that there was considerable overspray into the easement as well as planting within the easement. Some areas were improved from last season, and I did not note any impromptu crossings outside of the designated corridors, both of which I appreciate. However, there was damage to easement boundary signs and markers. See attachment for photos. This damage combined with the encroachment itself reflects a continued pattern of encroachment which needs to be resolved.

On Tuesday 6/6/23 we began adding additional easement boundary posts and a high visibility marker (horse tape fencing) in the most affected areas. I expect that you will be making your postemergence herbicide treatment in about 4 weeks and we want to make sure that the equipment operator can clearly see the areas which were problematic last time. In the coming weeks we will quantify the acres impacted by recent encroachments. Those areas will need to be

replanted with appropriate trees in November/December 2023. I will keep you posted on our plans/efforts to repair the damage.

In the meantime, please reiterate the need to avoid overspray and other encroachments with your field crews.

-Matthew

Matthew Harrell | Project Manager

Davey Mitigation

P: 252-299-1655

E: <u>matthew.harrell@davey.com</u>



From: Alex Duchesneau <<u>Alex.Duchesneau14@outlook.com</u>>
Sent: Monday, December 5, 2022 10:26 AM
To: Matthew Harrell <<u>mharrell@restorationsystems.com</u>>
Cc: Ray Holz <<u>rholz@restorationsystems.com</u>>; <u>franklinhowey@aol.com</u> <<u>franklinhowey@aol.com</u>>
Subject: RE: Nesbit Road Conservation Easement- Scalloping

Hi Matt-

I know we talked over the phone, but I wanted to get you a response in writing.

We have had staff meetings about this and our hope is that those will deter our encroachment into the easement going forward. We apologize for the scalloping that occurred and will do our best to ensure it does not happen in the future.

Once again, we appreciate you working with us and we will continue to emphasize the boundaries of each easement to our staff as they harvest and plant in 2023.

Thanks, Alex

From: Matthew Harrell <<u>mharrell@restorationsystems.com</u>>
Sent: Thursday, November 3, 2022 10:24 AM
To: Alex Duchesneau <<u>Alex.Duchesneau14@outlook.com</u>>
Cc: Ray Holz <<u>rholz@restorationsystems.com</u>>; <u>franklinhowey@aol.com</u>
Subject: Nesbit Road Conservation Easement- Scalloping

Hi Alex,

As we discussed yesterday the State DMS folks have called out scalloping along the easement boundary. This is where farm activities have slightly encroached into the easement. See attached pictures. The State takes this seriously and we need to make sure to get it taken care of sooner rather than later.

There are about ten areas like this along the boundary where we will have to add boundary posts to satisfy the State. As soon as the beans are harvested I will add those posts. As discussed yesterday, I will also add a taller pole to the existing corner markers to make it easier for your guys to see while operating equipment-I suspect some of the existing wooden posts were hard to see in the Johnson grass. On your end please make sure the equipment operators know that the easement is a no-go zone. I've attached a kmz of the boundary so everyone can readily see where the lines are.

Thanks, Matthew

#### **Matthew Harrell**

Sr. Project Manager |Restoration Systems, LLC 1101 Haynes St. |Suite 211|Raleigh, NC 27604 c: 252.299.1655 |p: 919.755.9490 www.restorationsystems.com